Suppr超能文献

迈向对运动不敏感的脑电图-功能磁共振成像:使用功能磁共振成像前瞻性运动校正(PMC)系统校正脑电图中运动诱发电压和梯度伪影不稳定性。

Towards motion insensitive EEG-fMRI: Correcting motion-induced voltages and gradient artefact instability in EEG using an fMRI prospective motion correction (PMC) system.

作者信息

Maziero Danilo, Velasco Tonicarlo R, Hunt Nigel, Payne Edwin, Lemieux Louis, Salmon Carlos E G, Carmichael David W

机构信息

Developmental Imaging and Biophysics Section, UCL Institute of Child Health, London, UK; InBrain Lab, Department of Physics, FFLCRP, University of São Paulo, Ribeirão Preto, SP, Brazil.

Epilepsy Surgery Centre, Department of Neuroscience, Faculty of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil.

出版信息

Neuroimage. 2016 Sep;138:13-27. doi: 10.1016/j.neuroimage.2016.05.003. Epub 2016 May 6.

Abstract

The simultaneous acquisition of electroencephalography and functional magnetic resonance imaging (EEG-fMRI) is a multimodal technique extensively applied for mapping the human brain. However, the quality of EEG data obtained within the MRI environment is strongly affected by subject motion due to the induction of voltages in addition to artefacts caused by the scanning gradients and the heartbeat. This has limited its application in populations such as paediatric patients or to study epileptic seizure onset. Recent work has used a Moiré-phase grating and a MR-compatible camera to prospectively update image acquisition and improve fMRI quality (prospective motion correction: PMC). In this study, we use this technology to retrospectively reduce the spurious voltages induced by motion in the EEG data acquired inside the MRI scanner, with and without fMRI acquisitions. This was achieved by modelling induced voltages from the tracking system motion parameters; position and angles, their first derivative (velocities) and the velocity squared. This model was used to remove the voltages related to the detected motion via a linear regression. Since EEG quality during fMRI relies on a temporally stable gradient artefact (GA) template (calculated from averaging EEG epochs matched to scan volume or slice acquisition), this was evaluated in sessions both with and without motion contamination, and with and without PMC. We demonstrate that our approach is capable of significantly reducing motion-related artefact with a magnitude of up to 10mm of translation, 6° of rotation and velocities of 50mm/s, while preserving physiological information. We also demonstrate that the EEG-GA variance is not increased by the gradient direction changes associated with PMC. Provided a scan slice-based GA template is used (rather than a scan volume GA template) we demonstrate that EEG variance during motion can be supressed towards levels found when subjects are still. In summary, we show that PMC can be used to dramatically improve EEG quality during large amplitude movements, while benefiting from previously reported improvements in fMRI quality, and does not affect EEG data quality in the absence of large amplitude movements.

摘要

同步采集脑电图和功能磁共振成像(EEG-fMRI)是一种广泛应用于绘制人类大脑图谱的多模态技术。然而,在MRI环境中获得的EEG数据质量会受到受试者运动的强烈影响,这是由于除了扫描梯度和心跳引起的伪影之外,还会感应出电压。这限制了其在儿科患者等人群中的应用,也限制了对癫痫发作起始的研究。最近的工作使用了莫尔相位光栅和与MR兼容的相机来前瞻性地更新图像采集并提高fMRI质量(前瞻性运动校正:PMC)。在本研究中,我们使用该技术回顾性地减少在MRI扫描仪内采集的EEG数据中由运动引起的虚假电压,无论是否进行fMRI采集。这是通过根据跟踪系统的运动参数(位置和角度、它们的一阶导数(速度)和速度平方)对感应电压进行建模来实现的。该模型用于通过线性回归去除与检测到的运动相关的电压。由于fMRI期间的EEG质量依赖于时间稳定的梯度伪影(GA)模板(通过对与扫描体积或切片采集匹配的EEG时段进行平均计算得出),因此在有无运动污染以及有无PMC的情况下对其进行了评估。我们证明,我们的方法能够显著减少与运动相关的伪影,平移幅度可达10mm、旋转角度可达6°、速度可达50mm/s,同时保留生理信息。我们还证明,与PMC相关的梯度方向变化不会增加EEG-GA方差。如果使用基于扫描切片的GA模板(而不是扫描体积GA模板),我们证明运动期间的EEG方差可以被抑制到受试者静止时的水平。总之,我们表明PMC可用于在大幅度运动期间显著提高EEG质量,同时受益于先前报道的fMRI质量的提高,并且在没有大幅度运动的情况下不会影响EEG数据质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验