Center for Advanced Materials and Green Technology, Multimedia University, Melaka, Malaysia.
Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia.
Electrophoresis. 2019 Oct;40(20):2728-2735. doi: 10.1002/elps.201800442. Epub 2019 Jun 26.
This paper presents the development and experimental analysis of a curved microelectrode platform for the DEP deformation of breast cancer cells (MDA-MB-231). The platform is composed of arrays of curved DEP microelectrodes which are patterned onto a glass slide and samples containing MDA-MB-231 cells are pipetted onto the platform's surface. Finite element method is utilised to characterise the electric field gradient and DEP field. The performance of the system is assessed with MDA-MB-231 cells in a low conductivity 1% DMEM suspending medium. We applied sinusoidal wave AC potential at peak to peak voltages of 2, 5, and 10 V at both 10 kHz and 50 MHz. We observed cell blebbing and cell shrinkage and analyzed the percentage of shrinkage of the cells. The experiments demonstrated higher percentage of cell shrinkage when cells are exposed to higher frequency and peak to peak voltage electric field.
本文提出了一种用于乳腺癌细胞(MDA-MB-231)的 DEP 变形的弯曲微电极平台的开发和实验分析。该平台由排列在玻璃载玻片上的弯曲 DEP 微电极阵列组成,含有 MDA-MB-231 细胞的样品被吸到平台表面上。利用有限元方法来描述电场梯度和 DEP 场。在低电导率为 1%的 DMEM 悬浮介质中,用 MDA-MB-231 细胞对系统性能进行评估。我们在 10kHz 和 50MHz 时施加峰值到峰值为 2、5 和 10V 的正弦交流电势。我们观察到细胞起泡和细胞收缩,并分析了细胞收缩的百分比。实验表明,当细胞暴露于更高频率和峰值到峰值电压的电场时,细胞收缩的百分比更高。