Laboratory of Membrane Biophysics and Biology, The Rockefeller University, New York, NY 10065, USA.
Tri-Institutional Training Program in Chemical Biology, The Rockefeller University, New York, NY 10065, USA.
Science. 2019 Jun 21;364(6446):1184-1188. doi: 10.1126/science.aaw7611.
Cystic fibrosis is a fatal disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). Two main categories of drugs are being developed: correctors that improve folding of CFTR and potentiators that recover the function of CFTR. Here, we report two cryo-electron microscopy structures of human CFTR in complex with potentiators: one with the U.S. Food and Drug Administration (FDA)-approved drug ivacaftor at 3.3-angstrom resolution and the other with an investigational drug, GLPG1837, at 3.2-angstrom resolution. These two drugs, although chemically dissimilar, bind to the same site within the transmembrane region. Mutagenesis suggests that in both cases, hydrogen bonds provided by the protein are important for drug recognition. The molecular details of how ivacaftor and GLPG1837 interact with CFTR may facilitate structure-based optimization of therapeutic compounds.
囊性纤维化是一种由囊性纤维化跨膜电导调节因子(CFTR)突变引起的致命疾病。目前正在开发两类药物:一种是改善 CFTR 折叠的校正剂,另一种是恢复 CFTR 功能的增敏剂。在这里,我们报告了人类 CFTR 与增敏剂复合物的两个冷冻电镜结构:一个分辨率为 3.3 埃的是与美国食品和药物管理局(FDA)批准的药物 ivacaftor 复合的,另一个分辨率为 3.2 埃的是与一种研究药物 GLPG1837 复合的。这两种药物虽然化学结构不同,但都结合在跨膜区域的相同部位。突变分析表明,在这两种情况下,蛋白质提供的氢键对于药物识别都很重要。ivacaftor 和 GLPG1837 与 CFTR 相互作用的分子细节可能有助于基于结构的治疗化合物的优化。