Laboratory of Membrane Biophysics and Biology, The Rockefeller University, New York, NY 10065.
Tri-Institutional Training Program in Chemical Biology, The Rockefeller University, New York, NY 10065.
Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):12757-12762. doi: 10.1073/pnas.1815287115. Epub 2018 Nov 20.
The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel important in maintaining proper functions of the lung, pancreas, and intestine. The activity of CFTR is regulated by ATP and protein kinase A-dependent phosphorylation. To understand the conformational changes elicited by phosphorylation and ATP binding, we present here the structure of phosphorylated, ATP-bound human CFTR, determined by cryoelectron microscopy to 3.2-Å resolution. This structure reveals the position of the R domain after phosphorylation. By comparing the structures of human CFTR and zebrafish CFTR determined under the same condition, we identified common features essential to channel gating. The differences in their structures indicate plasticity permitted in evolution to achieve the same function. Finally, the structure of CFTR provides a better understanding of why the G178R, R352Q, L927P, and G970R/D mutations would impede conformational changes of CFTR and lead to cystic fibrosis.
囊性纤维化跨膜电导调节因子(CFTR)是一种阴离子通道,对于维持肺、胰腺和肠道的正常功能非常重要。CFTR 的活性受 ATP 和蛋白激酶 A 依赖性磷酸化的调节。为了了解磷酸化和 ATP 结合所引起的构象变化,我们在此展示了通过冷冻电子显微镜在 3.2 Å 分辨率下确定的磷酸化、ATP 结合的人 CFTR 的结构。该结构揭示了磷酸化后 R 结构域的位置。通过比较在相同条件下测定的人 CFTR 和斑马鱼 CFTR 的结构,我们确定了对通道门控至关重要的共同特征。它们结构上的差异表明,进化中允许一定的可塑性以实现相同的功能。最后,CFTR 的结构为理解为什么 G178R、R352Q、L927P 和 G970R/D 突变会阻碍 CFTR 的构象变化并导致囊性纤维化提供了更好的认识。