Liu Feiyang, Zhang Yulong, Dahlsten Oscar, Wang Fei
Physics, Southern University of Science and Technology (SUSTech), Shenzhen, China.
School of Microelectronics, Southern University of Science and Technology (SUSTech), Nanshan District, Shenzhen, China.
Sci Rep. 2019 Jun 20;9(1):8994. doi: 10.1038/s41598-019-45103-4.
We probe the potential for intelligent intervention to enhance the power output of energy harvesters. We investigate general principles and a case study: a bi-resonant piezo electric harvester. We consider intelligent interventions via pre-programmed reversible energy-conserving operations. These include voltage bias flips and voltage phase shifts. These can be used to rectify voltages and to remove destructive interference. We choose the intervention type based on past data, using machine learning techniques. We find that in important parameter regimes the resulting interventions can outperform diode-based intervention, which in contrast has a fundamental minimum power dissipation bound.
我们探究了智能干预提高能量收集器功率输出的潜力。我们研究了一般原理并进行了一个案例分析:一个双共振压电能量收集器。我们考虑通过预编程的可逆节能操作进行智能干预。这些操作包括电压偏置翻转和电压相移。它们可用于整流电压并消除破坏性干扰。我们使用机器学习技术根据过去的数据选择干预类型。我们发现,在重要的参数范围内,所产生的干预效果可能优于基于二极管的干预,相比之下,基于二极管的干预存在基本的最小功耗限制。