Suppr超能文献

AAV 介导的神经营养因子基因治疗促进新生聋猫耳蜗螺旋神经节神经元存活的改善:AAV2-hBDNF 和 AAV5-hGDNF 的比较。

AAV-Mediated Neurotrophin Gene Therapy Promotes Improved Survival of Cochlear Spiral Ganglion Neurons in Neonatally Deafened Cats: Comparison of AAV2-hBDNF and AAV5-hGDNF.

机构信息

Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, 2340 Sutter Street, floor 3, room N331, San Francisco, CA, 94115-1330, USA.

Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, 533 Parnassus Avenue, Room U490, San Francisco, CA, 94143-0526, USA.

出版信息

J Assoc Res Otolaryngol. 2019 Aug;20(4):341-361. doi: 10.1007/s10162-019-00723-5. Epub 2019 Jun 20.

Abstract

Outcomes with contemporary cochlear implants (CI) depend partly upon the survival and condition of the cochlear spiral ganglion (SG) neurons. Previous studies indicate that CI stimulation can ameliorate SG neural degeneration after deafness, and brain-derived neurotrophic factor (BDNF) delivered by an osmotic pump can further improve neural survival. However, direct infusion of BDNF elicits undesirable side effects, and osmotic pumps are impractical for clinical application. In this study, we explored the potential for two adeno-associated viral vectors (AAV) to elicit targeted neurotrophic factor expression in the cochlea and promote improved SG and radial nerve fiber survival. Juvenile cats were deafened prior to hearing onset by systemic aminoglycoside injections. Auditory brainstem responses showed profound hearing loss by 16-18 days postnatal. At ~ 4 weeks of age, AAV2-GFP (green fluorescent protein), AAV5-GFP, AAV2-hBDNF, or AAV5-hGDNF (glial-derived neurotrophic factor) was injected through the round window unilaterally. For GFP immunofluorescence, animals were studied ~ 4 weeks post-injection to assess cell types transfected and their distributions. AAV2-GFP immunofluorescence demonstrated strong expression of the GFP reporter gene in residual inner (IHCs), outer hair cells (OHCs), inner pillar cells, and in some SG neurons throughout the cochlea. AAV5-GFP elicited robust transduction of IHCs and some SG neurons, but few OHCs and supporting cells. After AAV-neurotrophic factor injections, animals were studied ~ 3 months post-injection to evaluate neural survival. AAV5-hGDNF elicited a modest neurotrophic effect, with 6 % higher SG density, but had no trophic effect on radial nerve fiber survival, and undesirable ectopic fiber sprouting occurred. AAV2-hBDNF elicited a similar 6 % increase in SG survival, but also resulted in greatly improved radial nerve fiber survival, with no ectopic fiber sprouting. A further study assessed whether AAV2-hBDNF neurotrophic effects would persist over longer post-injection periods. Animals examined 6 months after virus injection showed substantial neurotrophic effects, with 14 % higher SG density and greatly improved radial nerve fiber survival. Our results suggest that AAV-neurotrophin gene therapy can elicit expression of physiological concentrations of neurotrophins in the cochlea, supporting improved SG neuronal and radial nerve fiber survival while avoiding undesirable side effects. These studies also demonstrate the potential for application of cochlear gene therapy in a large mammalian cochlea comparable to the human cochlea and in an animal model of congenital/early acquired deafness.

摘要

当代人工耳蜗(CI)的效果部分取决于耳蜗螺旋神经节(SG)神经元的存活和状态。先前的研究表明,CI 刺激可以改善耳聋后的 SG 神经退行性变,而通过渗透泵输送脑源性神经营养因子(BDNF)可以进一步提高神经存活。然而,BDNF 的直接输注会引发不良的副作用,并且渗透泵在临床应用中并不实用。在这项研究中,我们探讨了两种腺相关病毒(AAV)在耳蜗中引发靶向神经营养因子表达并促进改善 SG 和放射状神经纤维存活的潜力。在听觉出现之前,幼年猫通过全身氨基糖苷注射被致聋。听觉脑干反应显示出生后 16-18 天听力严重丧失。在大约 4 周龄时,单侧通过圆窗注射 AAV2-GFP(绿色荧光蛋白)、AAV5-GFP、AAV2-hBDNF 或 AAV5-hGDNF(胶质源性神经营养因子)。对于 GFP 免疫荧光,在注射后约 4 周研究动物,以评估转染的细胞类型及其分布。AAV2-GFP 免疫荧光显示 GFP 报告基因在残留的内毛细胞(IHCs)、外毛细胞(OHCs)、内柱细胞和整个耳蜗中的一些 SG 神经元中强烈表达。AAV5-GFP 引起 IHCs 和一些 SG 神经元的强大转导,但很少有 OHCs 和支持细胞。AAV-神经营养因子注射后,在注射后约 3 个月评估神经存活。AAV5-hGDNF 引起适度的神经营养作用,SG 密度增加 6%,但对放射状神经纤维存活没有营养作用,并且发生了不良的异位纤维发芽。AAV2-hBDNF 引起 SG 存活类似的 6%增加,但也导致放射状神经纤维存活大大改善,没有异位纤维发芽。进一步的研究评估了 AAV2-hBDNF 神经营养作用是否会在更长的注射后期间持续。病毒注射 6 个月后检查的动物显示出实质性的神经营养作用,SG 密度增加 14%,放射状神经纤维存活大大改善。我们的结果表明,AAV-神经营养因子基因治疗可以在耳蜗中引发生理浓度的神经营养因子表达,支持改善 SG 神经元和放射状神经纤维存活,同时避免不良的副作用。这些研究还证明了耳蜗基因治疗在类似于人类耳蜗的大型哺乳动物耳蜗和先天性/早期获得性耳聋的动物模型中的应用潜力。

相似文献

4
Effects of brain-derived neurotrophic factor (BDNF) on the cochlear nucleus in cats deafened as neonates.
Hear Res. 2016 Dec;342:134-143. doi: 10.1016/j.heares.2016.10.011. Epub 2016 Oct 20.
5
Neurotrophin gene therapy to promote survival of spiral ganglion neurons after deafness.
Hear Res. 2020 Sep 1;394:107955. doi: 10.1016/j.heares.2020.107955. Epub 2020 Apr 5.
6
The effect of deafness duration on neurotrophin gene therapy for spiral ganglion neuron protection.
Hear Res. 2011 Aug;278(1-2):69-76. doi: 10.1016/j.heares.2011.04.010. Epub 2011 May 1.
7
Neurotrophin Gene Therapy in Deafened Ears with Cochlear Implants: Long-term Effects on Nerve Survival and Functional Measures.
J Assoc Res Otolaryngol. 2017 Dec;18(6):731-750. doi: 10.1007/s10162-017-0633-9. Epub 2017 Aug 3.
8
Factors influencing neurotrophic effects of electrical stimulation in the deafened developing auditory system.
Hear Res. 2008 Aug;242(1-2):86-99. doi: 10.1016/j.heares.2008.06.002. Epub 2008 Jun 7.

引用本文的文献

1
Principles of gene therapy of the inner ear.
Curr Opin Otolaryngol Head Neck Surg. 2025 Oct 1;33(5):295-305. doi: 10.1097/MOO.0000000000001067. Epub 2025 Aug 1.
5
Improving Control of Gene Therapy-Based Neurotrophin Delivery for Inner Ear Applications.
Front Bioeng Biotechnol. 2022 Jun 3;10:892969. doi: 10.3389/fbioe.2022.892969. eCollection 2022.
6
The Genomics of Auditory Function and Disease.
Annu Rev Genomics Hum Genet. 2022 Aug 31;23:275-299. doi: 10.1146/annurev-genom-121321-094136. Epub 2022 Jun 6.
7
Mechanism and Prevention of Spiral Ganglion Neuron Degeneration in the Cochlea.
Front Cell Neurosci. 2022 Jan 5;15:814891. doi: 10.3389/fncel.2021.814891. eCollection 2021.
8
Transduction Efficiency and Immunogenicity of Viral Vectors for Cochlear Gene Therapy: A Systematic Review of Preclinical Animal Studies.
Front Cell Neurosci. 2021 Aug 30;15:728610. doi: 10.3389/fncel.2021.728610. eCollection 2021.

本文引用的文献

1
A Randomized Controlled Crossover Study of the Impact of Online Music Training on Pitch and Timbre Perception in Cochlear Implant Users.
J Assoc Res Otolaryngol. 2019 Jun;20(3):247-262. doi: 10.1007/s10162-018-00704-0. Epub 2019 Feb 27.
3
Health-Related Quality of Life in Mandarin-Speaking Children With Cochlear Implants.
Ear Hear. 2019 May/Jun;40(3):605-614. doi: 10.1097/AUD.0000000000000633.
4
Choroideremia: molecular mechanisms and development of AAV gene therapy.
Expert Opin Biol Ther. 2018 Jul;18(7):807-820. doi: 10.1080/14712598.2018.1484448. Epub 2018 Jun 22.
5
Delivery of Adeno-Associated Virus Vectors in Adult Mammalian Inner-Ear Cell Subtypes Without Auditory Dysfunction.
Hum Gene Ther. 2018 Apr;29(4):492-506. doi: 10.1089/hum.2017.120. Epub 2018 Jan 22.
6
Neurotrophin Gene Therapy in Deafened Ears with Cochlear Implants: Long-term Effects on Nerve Survival and Functional Measures.
J Assoc Res Otolaryngol. 2017 Dec;18(6):731-750. doi: 10.1007/s10162-017-0633-9. Epub 2017 Aug 3.
8
Rescue of Hearing by Gene Delivery to Inner-Ear Hair Cells Using Exosome-Associated AAV.
Mol Ther. 2017 Feb 1;25(2):379-391. doi: 10.1016/j.ymthe.2016.12.010. Epub 2017 Jan 9.
10
Biology of GDNF and its receptors - Relevance for disorders of the central nervous system.
Neurobiol Dis. 2017 Jan;97(Pt B):80-89. doi: 10.1016/j.nbd.2016.01.021. Epub 2016 Jan 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验