Université des Sciences et de la Technologie d'Oran Mohamed-Boudiaf, Oran, Algérie.
Laboratoire d'Ingénierie des Procédés de l'Environnement, Université des Sciences et de la Technologie d'Oran Mohamed-Boudiaf, Oran, Algérie.
Environ Technol. 2021 Jan;42(3):492-504. doi: 10.1080/09593330.2019.1635652. Epub 2019 Jul 16.
Following their successful utilization as novel bioanodes in Microbial Fuel Cells (MFCs), Layered Double Hydroxide (LDH) were tested in the present investigation, as promising cathodes to reduce electrons coming from oxidation of organic matter in the anode compartment, in the presence of oxygen used as successful oxidant. Therefore, the LDH samples NiAl-LDH with the ionic ratio Ni/Al equal to 3, were synthesized and added by adsorption to Carbon Felt (CF) fibres. They were then stored separately in three electrolyte solutions KCl, NiCl and AlCl used as catholytes in the MFCs. Effects of the active cationic sites located inside the NiAl-LDH on these electrolytes, were discussed in terms of energies produced by these MFCs. The structure and morphology of the synthesized LDH, were studied by using the analytical techniques XRD, FTIRS and SEM, while the electrode performances of the LDH-electrodes were investigated with the electrochemical methods CV and EIS. It was revealed that the CF modified with NiAl-LDH cathode and conditioned in the NiCl electrolyte solution yielded the highest energy harvesting for the MFC (i.e. 3.2 µW/cm). This power density output was similar to previous clean one-compartment MFC. However, it was less expensive than an Enzymatic Fuel Cell (45 µW/cm), making in evidence the highest cost of the material. Thus, by taking into account these encouraging findings, the low cost materials used in MFCs held great promise for practical application in electrochemical power devices and therefore fruit waste treatment. ACFC: Air Cathode Fuel Cell; ADEFC: Alkaline Direct Ethanol Fuel Cell; AFC: Alcaline Fuel Cell; BET: Brunauer-Emmett-Teller; BFC: Biological Fuel Cell; CF: Carbon Felt; CV: Cyclic Voltammetry; DGFC: Direct Glucose Fuel Cell; DMFC: Direct Methanol Fuel Cell; EFC: Enzymatic Fuel Cell; EIS: Electrochemical Impedance Spectroscopy; FC: Fuel Cell; FTIR: Fourier Transform Infra Red spectroscopy; LDH: Layered Double Hydroxide; MEC: Microbial Electrolysis Cell; MFC: Microbial Fuel Cell; Mg-Al- -LDH: Layered Double Hydroxide Magnesium-Aluminium-Carbonate; Ni-Al-LDH: Layered Double Hydroxide Nickel-Aluminium; OCP: Open Circuit Potential; SEM: Scanning Electron Microscope; TG/DTA: ThermoGravimetric and Differential Thermal Analysis; XRD: X-Ray Diffraction.
在微生物燃料电池(MFC)中成功用作新型生物阳极后,层状双氢氧化物(LDH)在本研究中被测试为有前途的阴极,以减少来自阳极室中有机物氧化的电子,同时使用氧气作为成功的氧化剂。因此,合成了离子比 Ni/Al 等于 3 的 NiAl-LDH 样品,并通过吸附添加到碳纤维毡(CF)纤维上。然后,它们分别储存在 KCl、NiCl 和 AlCl 三种电解质溶液中,用作 MFC 的阴极。从这些 MFC 产生的能量的角度,讨论了位于 NiAl-LDH 内的活性阳离子位点对这些电解质的影响。使用 XRD、FTIRS 和 SEM 等分析技术研究了合成 LDH 的结构和形态,而通过 CV 和 EIS 等电化学方法研究了 LDH 电极的电极性能。结果表明,在 NiCl 电解质溶液中条件下的 NiAl-LDH 修饰的 CF 阴极产生了用于 MFC 的最高能量收集(即 3.2µW/cm)。该功率密度输出与以前的清洁单室 MFC 相似。然而,它比酶燃料电池(45µW/cm)便宜,这表明材料的成本最高。因此,考虑到这些令人鼓舞的发现,MFC 中使用的低成本材料在电化学功率器件的实际应用中具有很大的前景,因此可用于处理水果废物。ACFC:空气阴极燃料电池;ADEFC:碱性直接乙醇燃料电池;AFC:碱性燃料电池;BET:Brunauer-Emmett-Teller;BFC:生物燃料电池;CF:碳纤维毡;CV:循环伏安法;DGFC:直接葡萄糖燃料电池;DMFC:直接甲醇燃料电池;EFC:酶燃料电池;EIS:电化学阻抗谱;FC:燃料电池;FTIR:傅里叶变换红外光谱;LDH:层状双氢氧化物;MEC:微生物电解池;MFC:微生物燃料电池;Mg-Al- -LDH:层状双氢氧化物镁-铝-碳酸盐;Ni-Al-LDH:层状双氢氧化物镍-铝;OCP:开路电位;SEM:扫描电子显微镜;TG/DTA:热重和差热分析;XRD:X 射线衍射。