Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea; Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, 1.5 KM Defence Road, Off Raiwind Road, Lahore, 54000, Pakistan.
International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
Chemosphere. 2021 Apr;268:128784. doi: 10.1016/j.chemosphere.2020.128784. Epub 2020 Oct 27.
In recent years, the modification of electrode materials for enhancing the power generation of microbial fuel cells (MFCs) has attracted considerable attention. In this study, a conventional carbon felt (CF) electrode was modified by NiFeO (NiFeO@CF), MXene (MXene@CF), and NiFeO-MXene (NiFeO-MXene@CF) using facile dip-and-dry and hydrothermal methods. In these modified CF electrodes, the electrochemical performance considerably improved, while the highest power density (1385 mW/m), which was 5.6, 2.8, and 1.4 times higher than those of CF, NiFeO@CF, and MXene@CF anodes, respectively, was achieved using NiFeO-MXene@CF. Furthermore, electrochemical impedance spectroscopy and cyclic voltammetry results confirmed the superior bioelectrochemical activity of a NiFeO-MXene@CF anode in a MFC. The improved performance could be attributed to the low charge transfer resistance, high conductivity and number of catalytically active sites of the NiFeO-MXene@CF anode. Microbial community analysis demonstrated the relative abundance of electroactive bacteria on a NiFeO-MXene@CF anodic biofilm rather than CF, MXene@CF, and NiFeO@CF anodes. Therefore, these results suggest that combining the favorable properties of composite materials such as NiFeO-MXene@CF anodes can open up new directions for fabricating novel electrodes for renewable energy-related applications.
近年来,通过修饰电极材料来提高微生物燃料电池(MFC)的发电性能引起了相当大的关注。在这项研究中,使用简便的浸泡和干燥以及水热方法,将常规的碳纤维毡(CF)电极修饰为 NiFeO(NiFeO@CF)、MXene(MXene@CF)和 NiFeO-MXene(NiFeO-MXene@CF)。在这些修饰的 CF 电极中,电化学性能显著提高,而使用 NiFeO-MXene@CF 的最大功率密度(1385 mW/m)分别是 CF、NiFeO@CF 和 MXene@CF 阳极的 5.6、2.8 和 1.4 倍。此外,电化学阻抗谱和循环伏安法结果证实了 NiFeO-MXene@CF 阳极在 MFC 中的优越生物电化学活性。性能的提高可以归因于 NiFeO-MXene@CF 阳极的低电荷转移电阻、高导电性和催化活性位点数量。微生物群落分析表明,NiFeO-MXene@CF 阳极的电活性细菌在阳极生物膜中的相对丰度高于 CF、MXene@CF 和 NiFeO@CF 阳极。因此,这些结果表明,结合 NiFeO-MXene@CF 等复合材料的有利特性可以为可再生能源相关应用的新型电极的制造开辟新的方向。