Fiedurek J, Paszczyński A, Ginalska G, Ilczuk Z
Department of Applied Microbiology, Marie-Curie Sklodowska University, Lublin, Poland.
Zentralbl Mikrobiol. 1987;142(5):407-12.
As a result of mutagenization and passaging on 2-deoxy-D-glucose containing medium, 10 Aspergillus niger strains resistant to this agent were obtained. These showed (with one exception) an increase in the activity of glucoamylse, the level of which ranged widely in individual cases from several to over 200% in comparison with the parent strain. A weaker rate of glucose accumulation in derepressed strains may account for the fact that the mechanism of their resistance to deoxyglucose is connected with disturbance of the system of glucose transport. However, it is possible that a high activity of acid phosphatase, which the obtained deoxyglucose-resistant cultures showed, may be involved here. Apart from the biochemical character of the catabolic derepression, it seems that it can already be successfully utilized to increase the productivity of industrial mould cultures.