Suppr超能文献

固体摩擦胶体模型中的周期性屈曲和晶界滑移。

Periodic buckling and grain boundary slips in a colloidal model of solid friction.

作者信息

Janai Erez, Butenko Alexander V, Schofield Andrew B, Sloutskin Eli

机构信息

Physics Department and Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.

The School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UK.

出版信息

Soft Matter. 2019 Jul 14;15(26):5227-5233. doi: 10.1039/c9sm00654k. Epub 2019 Jun 21.

Abstract

The intermittent 'stick-slip' dynamics in frictional sliding of solid bodies is common in everyday life and technology. This dynamics has been widely studied on a macroscopic scale, where the thermal motion can usually be neglected. However, the microscopic mechanisms behind the periodic stick-slip events are yet unclear. We employ confocal microscopy of colloidal spheres, to study the frictional dynamics at the boundary between two quasi-two-dimensional (2D) crystalline grains, with a single particle resolution. Such unprecedentedly-detailed observations of the microscopic-scale frictional solid-on-solid sliding have never been previously carried out. At this scale, the particles undergo an intense thermal motion, which masks the avalanche-like nature of the underlying frictional dynamics. We demonstrate that the underlying sliding dynamics involving out-of-plane buckling events, is intermittent and periodic, like in macroscopic friction. However, unlike in the common models of friction, the observed periodic frictional dynamics is promoted, rather than just suppressed, by the thermal noise, which maximizes the entropy of the system.

摘要

固体摩擦滑动中的间歇性“粘滑”动力学在日常生活和技术中很常见。这种动力学已在宏观尺度上得到广泛研究,在该尺度下热运动通常可以忽略不计。然而,周期性粘滑事件背后的微观机制尚不清楚。我们采用胶体球的共聚焦显微镜,以单粒子分辨率研究两个准二维(2D)晶粒边界处的摩擦动力学。此前从未对微观尺度的固体间摩擦滑动进行过如此前所未有的详细观测。在这个尺度下,粒子经历剧烈的热运动,这掩盖了潜在摩擦动力学的雪崩式本质。我们证明,与宏观摩擦一样,涉及面外屈曲事件的潜在滑动动力学是间歇性和周期性的。然而,与常见的摩擦模型不同,观测到的周期性摩擦动力学是由热噪声促进的,而不仅仅是受到抑制,热噪声使系统的熵最大化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验