Suppr超能文献

基于时钟的电化学阻抗谱的谐波误差消除方法。

A Harmonic Error Cancellation Method for Accurate Clock-Based Electrochemical Impedance Spectroscopy.

出版信息

IEEE Trans Biomed Circuits Syst. 2019 Aug;13(4):710-724. doi: 10.1109/TBCAS.2019.2923719. Epub 2019 Jun 19.

Abstract

Electrochemical impedance spectroscopy (EIS) is a widely used method to characterize the biological materials. In traditional methods for EIS, a sinusoidal current is used to excite the material under test and the measured voltage across that material is demodulated by a linear multiplication with quadrature sinusoidal signals. From the resulting demodulated output, the impedance (magnitude and phase) can be calculated. Although this sine-wave-based impedance measurement method can produce accurate impedance measurements, it requires bulky components and suffers from poor power efficiency due to sinusoidal waveform generation and linear multiplication. Alternatively, a method using square-wave signal, which is simply a clock, for both excitation and demodulation can be much more area and power efficient, but inherently suffers from substantial errors in the result due to significant harmonics in square waves. In this paper, we propose a technique to cancel out the errors caused by such harmonics of the square-wave-based excitation and demodulation. The proposed technique, based on the fact that the magnitude ratio of all the harmonics of a square wave are known, cancels out harmonic errors by subtracting or adding the square-wave-based measured results at higher harmonic frequencies as a simple post-processing calculation. Simulations on specific and also generic impedance models demonstrate the applicability of this technique to various impedance models. Experimental results using a discrete circuit model show that this technique can provide a precise measurement of the impedance with 1% magnitude error and 0.5° phase error considering just five terms. In addition, measurements with a biological tissue show an average magnitude and phase error of 0.7% and [Formula: see text], respectively, using the proposed error cancellation. Because this method replaces sinusoidal signal generation and linear multiplication with clock generation and simple switching, it has great potential to be integrated in a wearable and implantable health monitoring device at low area and power consumption.

摘要

电化学阻抗谱 (EIS) 是一种广泛用于表征生物材料的方法。在传统的 EIS 方法中,使用正弦电流来激励待测材料,并且通过与正交正弦信号的线性乘法来解调测量的跨材料电压。从得到的解调输出中,可以计算出阻抗(幅度和相位)。尽管这种基于正弦波的阻抗测量方法可以产生准确的阻抗测量结果,但它需要体积庞大的组件,并且由于正弦波的产生和线性乘法,效率低下。相比之下,使用方波信号(仅是时钟)进行激励和解调的方法可以更节省面积和功率,但由于方波中的显著谐波,固有地会导致结果中的大量误差。在本文中,我们提出了一种技术来消除基于方波的激励和解调中的谐波误差。所提出的技术基于方波的所有谐波的幅度比都是已知的事实,通过在更高次谐波频率下减去或添加基于方波的测量结果作为简单的后处理计算,从而消除谐波误差。针对特定和通用阻抗模型的仿真表明,该技术适用于各种阻抗模型。使用离散电路模型的实验结果表明,该技术可以在考虑五个项的情况下提供 1%幅度误差和 0.5°相位误差的精确阻抗测量。此外,使用生物组织的测量结果表明,使用所提出的误差消除技术,平均幅度和相位误差分别为 0.7%和[Formula: see text]。由于该方法用时钟生成和简单开关代替了正弦信号生成和线性乘法,因此它非常有潜力在低面积和低功耗的可穿戴和植入式健康监测设备中进行集成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验