Suppr超能文献

用于电阻抗谱的片上正弦信号发生器:方法学综述

On-Chip Sinusoidal Signal Generators for Electrical Impedance Spectroscopy: Methodological Review.

作者信息

Kweon Soon-Jae, Rafi Ayesha Kajol, Cheon Song-I, Je Minkyu, Ha Sohmyung

出版信息

IEEE Trans Biomed Circuits Syst. 2022 Jun;16(3):337-360. doi: 10.1109/TBCAS.2022.3171163. Epub 2022 Jul 12.

Abstract

This paper reviews architectures and circuit implementations of on-chip sinusoidal signal generators (SSGs) for electrical impedance spectroscopy (EIS) applications. In recent years, there have been increasing interests in on-chip EIS systems, which measure a target material's impedance spectrum over a frequency range. The on-chip implementation allows EIS systems to have low power and small form factor, enabling various biomedical applications. One of the key building blocks of on-chip EIS systems is on-chip SSG, which determines the frequency range and the analysis precision of the whole EIS system. On-chip SSGs are generally required to have high linearity, wide frequency range, and high power and area efficiency. They are typically composed of three stages in general: waveform generation, linearity enhancement, and current injection. First, a sinusoidal waveform should be generated in SSGs. The generated waveform's frequency should be accurately adjustable over a wide range. The firstly generated waveform may not be perfectly linear, including unwanted harmonics. In the following linearity-enhancement step, these harmonics are attenuated by using filters typically. As the linearity of the waveform is improved, the precision of the EIS system gets ensured. Lastly, the filtered voltage waveform is now converted to a current by a current driver. Then, the current sinusoidal signal is injected into the target impedance. This review discusses the principles, advantages, and disadvantages of various techniques applied to each step in state-of-the-art on-chip SSGs. In addition, state-of-the-art designs are compared and summarized.

摘要

本文综述了用于电阻抗谱(EIS)应用的片上正弦信号发生器(SSG)的架构和电路实现。近年来,人们对片上EIS系统的兴趣日益浓厚,该系统可在一定频率范围内测量目标材料的阻抗谱。片上实现使EIS系统具有低功耗和小尺寸的特点,从而能够实现各种生物医学应用。片上EIS系统的关键组件之一是片上SSG,它决定了整个EIS系统的频率范围和分析精度。片上SSG通常需要具有高线性度、宽频率范围以及高功率和面积效率。它们一般由三个阶段组成:波形生成、线性度增强和电流注入。首先,SSG中应生成正弦波形。生成的波形频率应能在很宽的范围内精确调节。最初生成的波形可能并非完美线性,会包含不需要的谐波。在接下来的线性度增强步骤中,通常使用滤波器来衰减这些谐波。随着波形线性度的提高,EIS系统的精度得以保证。最后,经过滤波的电压波形由电流驱动器转换为电流。然后,将电流正弦信号注入目标阻抗。本文综述了应用于当前最先进的片上SSG各步骤的各种技术的原理、优缺点。此外,还对当前最先进的设计进行了比较和总结。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验