Suppr超能文献

瘤胃拟杆菌中β-葡萄糖苷酶通过不同机制进行调控:生长速率依赖性去阻遏。

Regulation of beta-glucosidase in Bacteroides ruminicola by a different mechanism: growth rate-dependent derepression.

作者信息

Strobel H J, Russell J B

机构信息

Department of Animal Science, Cornell University, Ithaca, New York.

出版信息

Appl Environ Microbiol. 1987 Oct;53(10):2505-10. doi: 10.1128/aem.53.10.2505-2510.1987.

Abstract

Bacteroides ruminicola B(1)4, a predominant ruminal and cecal bacterium, was grown in batch and continuous cultures, and beta-glucosidase activity was measured by following the hydrolysis of p-nitrophenyl-beta-glucopyranoside. Specific activity was high when the bacterium was grown in batch cultures containing cellobiose, mannose, or lactose (greater than 286 U/g of protein). Activity was reduced approximately 90% when the organism was grown on glucose, sucrose, fructose, maltose, or arabinose. The specific activity of cells fermenting glucose was initially low but increased as glucose was depleted. When glucose was added to cultures growing on cellobiose, beta-glucosidase synthesis ceased immediately. Catabolite repression by glucose was not accompanied by diauxic growth and was not relieved by cyclic AMP. Since glucose-grown cultures eventually exhibited high beta-glucosidase activity, cellobiose was not needed as an inducer. Catabolite repression explained beta-glucosidase activity of batch cultures and high-dilution-rate chemostats where glucose accumulated, but it could not account for activity at slow dilution rates. Maximal beta-glucosidase activity was observed at a dilution rate of approximately 0.35 h-1, and cellobiose-limited chemostats showed a 15-fold decrease in activity as the dilution rate declined. An eightfold decline was observed in glucose-limited chemostats. Since inducer availability was not a confounding factor in glucose-limited chemostats, the growth rate-dependent derepression could not be explained by other mechanisms.

摘要

瘤胃栖粪杆菌B(1)4是瘤胃和盲肠中的优势菌,在分批培养和连续培养中生长,并通过跟踪对硝基苯基-β-D-吡喃葡萄糖苷的水解来测定β-葡萄糖苷酶活性。当该细菌在含有纤维二糖、甘露糖或乳糖的分批培养物中生长时,比活性较高(大于286 U/g蛋白质)。当该微生物在葡萄糖、蔗糖、果糖、麦芽糖或阿拉伯糖上生长时,活性降低约90%。发酵葡萄糖的细胞的比活性最初较低,但随着葡萄糖的消耗而增加。当向在纤维二糖上生长的培养物中添加葡萄糖时,β-葡萄糖苷酶的合成立即停止。葡萄糖的分解代谢物阻遏不伴有二次生长,也不能被环腺苷酸解除。由于在葡萄糖上生长的培养物最终表现出高β-葡萄糖苷酶活性,因此不需要纤维二糖作为诱导剂。分解代谢物阻遏解释了分批培养物和葡萄糖积累的高稀释率恒化器中的β-葡萄糖苷酶活性,但不能解释低稀释率下的活性。在约0.35 h-1的稀释率下观察到最大β-葡萄糖苷酶活性,随着稀释率下降,纤维二糖限制的恒化器中活性下降了15倍。在葡萄糖限制的恒化器中观察到活性下降了8倍。由于在葡萄糖限制的恒化器中诱导剂的可用性不是一个混杂因素,因此生长速率依赖性去阻遏不能用其他机制来解释。

相似文献

1
Regulation of beta-glucosidase in Bacteroides ruminicola by a different mechanism: growth rate-dependent derepression.
Appl Environ Microbiol. 1987 Oct;53(10):2505-10. doi: 10.1128/aem.53.10.2505-2510.1987.
2
Production of beta-glucosidase and diauxic usage of sugar mixtures by Candida molischiana.
Can J Microbiol. 1996 May;42(5):431-6. doi: 10.1139/m96-059.
3
Catabolite repression in the hyperthermophilic bacterium Thermotoga neapolitana is independent of cAMP.
Microbiology (Reading). 1996 Jan;142 ( Pt 1):139-144. doi: 10.1099/13500872-142-1-139.
4
Cellodextrin utilization and beta-glucosidase production by Bacteroides polypragmatus.
Arch Microbiol. 1986 Jun;145(1):91-6. doi: 10.1007/BF00413033.
5
Cellulolytic activity of the rumen bacterium Bacteroides succinogenes.
Can J Microbiol. 1981 May;27(5):517-30. doi: 10.1139/m81-077.
7
Kinetic mechanism of beta-glucosidase from Trichoderma reesei QM 9414.
Biochim Biophys Acta. 1990 Mar 26;1033(3):298-304. doi: 10.1016/0304-4165(90)90137-l.
9
Production, purification, and characterization of a highly glucose-tolerant novel beta-glucosidase from Candida peltata.
Appl Environ Microbiol. 1996 Sep;62(9):3165-70. doi: 10.1128/aem.62.9.3165-3170.1996.
10
Induction of beta-D-glucosidase in Streptomyces granaticolor.
Folia Microbiol (Praha). 1983;28(5):379-85. doi: 10.1007/BF02879487.

引用本文的文献

1
Placenta inflammation is closely associated with gestational diabetes mellitus.
Am J Transl Res. 2021 May 15;13(5):4068-4079. eCollection 2021.
2
A Novel Tightly Regulated Gene Expression System for the Human Intestinal Symbiont Bacteroides thetaiotaomicron.
Front Microbiol. 2016 Jul 13;7:1080. doi: 10.3389/fmicb.2016.01080. eCollection 2016.
3
Effect of Methanobrevibacter smithii on Xylanolytic Activity of Anaerobic Ruminal Fungi.
Appl Environ Microbiol. 1990 Aug;56(8):2287-2295. doi: 10.1128/aem.56.8.2287-2295.1990.
4
Role of phosphorolytic cleavage in cellobiose and cellodextrin metabolism by the ruminal bacterium Prevotella ruminicola.
Appl Environ Microbiol. 1996 May;62(5):1770-3. doi: 10.1128/aem.62.5.1770-1773.1996.
5
Pentose utilization and transport by the ruminal bacterium Prevotella ruminicola.
Arch Microbiol. 1993;159(5):465-71. doi: 10.1007/BF00288595.
6
Glucose toxicity in Prevotella ruminicola: methylglyoxal accumulation and its effect on membrane physiology.
Appl Environ Microbiol. 1993 Sep;59(9):2844-50. doi: 10.1128/aem.59.9.2844-2850.1993.

本文引用的文献

1
Regulation of beta-1, 4-Glucosidase Expression by Candida wickerhamii.
Appl Environ Microbiol. 1985 Jul;50(1):152-9. doi: 10.1128/aem.50.1.152-159.1985.
2
Substrate preferences in rumen bacteria: evidence of catabolite regulatory mechanisms.
Appl Environ Microbiol. 1978 Aug;36(2):319-29. doi: 10.1128/aem.36.2.319-329.1978.
5
The reaction of pentoses with anthrone.
Biochem J. 1958 Apr;68(4):669-72. doi: 10.1042/bj0680669.
6
Ammonia saturation constants for predominant species of rumen bacteria.
J Dairy Sci. 1980 Aug;63(8):1248-63. doi: 10.3168/jds.S0022-0302(80)83076-1.
7
Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture.
Appl Environ Microbiol. 1980 Mar;39(3):604-10. doi: 10.1128/aem.39.3.604-610.1980.
8
Characterization of the cecal bacteria of normal pigs.
Appl Environ Microbiol. 1981 Apr;41(4):950-5. doi: 10.1128/aem.41.4.950-955.1981.
9
beta-D-xylosidase from Bacillus pumilus.
Methods Enzymol. 1982;83:631-9. doi: 10.1016/0076-6879(82)83062-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验