Suppr超能文献

基于蚁群优化的皮肤病变边缘检测改进方法。

Improved skin lesion edge detection method using Ant Colony Optimization.

机构信息

Amity Institute of Information Technology, Amity University, Noida, Uttar Pradesh, India.

Yashodha Super Speciality Hospital, Ghaziabad, Uttar Pradesh, India.

出版信息

Skin Res Technol. 2019 Nov;25(6):846-856. doi: 10.1111/srt.12744. Epub 2019 Jun 22.

Abstract

BACKGROUND

Skin lesion edge detection is a significant step in developing an automatized diagnostic system. The efficient diagnostic system leads to correct identification and detection of skin lesion diseases. In this paper, ant colony optimization (ACO) technique is used to improve the edge contour of skin lesion images.

MATERIAL AND METHOD

Firstly, a three-stage preprocessing methodology involving color space conversion, contrast enhancement, and filtering is applied to improve the skin lesion image quality. The edge map is obtained by applying three types of conventional edge detection methods namely Canny, Sobel, and Prewitt. Thereafter, ACO is applied on these images to produce an improved edge contour.

RESULT

The improvement of the proposed methodology is quantitatively verified by analysis of the entropy of the final image obtained by conventional and proposed techniques.

CONCLUSION

From the result analysis, we can conclude that introduction of ACO has increased the efficiency of the conventional edge detection method in skin lesion images.

摘要

背景

皮肤损伤边缘检测是开发自动化诊断系统的重要步骤。高效的诊断系统可实现对皮肤损伤疾病的正确识别和检测。在本文中,使用蚁群优化(ACO)技术来改善皮肤损伤图像的边缘轮廓。

材料与方法

首先,应用三阶段预处理方法,包括颜色空间转换、对比度增强和滤波,以改善皮肤损伤图像的质量。通过应用三种类型的传统边缘检测方法(即 Canny、Sobel 和 Prewitt)获得边缘图。然后,将 ACO 应用于这些图像以生成改进的边缘轮廓。

结果

通过对传统技术和提出的技术获得的最终图像的熵进行分析,定量验证了所提出方法的改进。

结论

从结果分析中可以得出结论,引入 ACO 提高了传统边缘检测方法在皮肤损伤图像中的效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验