Suppr超能文献

一种计算多尺度方法,用于研究机械诱导的三尖瓣前瓣小叶微观结构变化。

A computational multi-scale approach to investigate mechanically-induced changes in tricuspid valve anterior leaflet microstructure.

机构信息

Department of Biomedical Engineering, The University of Akron, Akron, OH, United States.

Department of Chemical Engineering, University of Minnesota Duluth, Duluth, MN, United States.

出版信息

Acta Biomater. 2019 Aug;94:524-535. doi: 10.1016/j.actbio.2019.05.074. Epub 2019 Jun 20.

Abstract

The tricuspid valve is an atrioventricular valve that prevents blood backflow from the right ventricle into the right atrium during ventricular contractions. It is important to study mechanically induced microstructural alterations in the tricuspid valve leaflets, as this aids both in understanding valvular diseases and in the development of new engineered tissue replacements. The structure and composition of the extracellular matrix (ECM) fiber networks are closely tied to an overall biomechanical function of the tricuspid valve. In this study, we conducted experiments and implemented a multiscale modeling approach to predict ECM microstructural changes to tissue-level mechanical responses in a controlled loading environment. In particular, we characterized a sample of a porcine anterior leaflet at a macroscale using a biaxial mechanical testing method. We then generated a three-dimensional finite element model, to which computational representations of corresponding fiber networks were incorporated based on properties of the microstructural architecture obtained from small angle light scattering. Using five different biaxial boundary conditions, we performed iterative simulations to obtain model parameters with an overall R value of 0.93. We observed that mechanical loading could markedly alter the underlying ECM architecture. For example, a relatively isotropic fiber network (with an anisotropy index value α of 28%) became noticeably more anisotropic (with an α of 40%) when it underwent mechanical loading. We also observed that the mechanical strain was distributed in a different manner at the ECM/fiber level as compared to the tissue level. The approach presented in this study has the potential to be implemented in pathophysiologically altered biomechanical and structural conditions and to bring insights into the mechanobiology of the tricuspid valve. STATEMENT OF SIGNIFICANCE: Quantifying abnormal cellar/ECM-level deformation of tricuspid valve leaflets subjected to a modified loading environment is of great importance, as it is believed to be linked to valvular remodeling responses. For example, developing surgical procedures or engineered tissue replacements that maintain/mimic ECM-level mechanical homeostasis could lead to more durable outcomes. To quantify leaflet deformation, we built a multiscale framework encompassing the contributions of disorganized ECM components and organized fibers, which can predict the behavior of the tricuspid valve leaflets under physiological loading conditions both at the tissue level and at the ECM level. In addition to future in-depth studies of tricuspid valve pathologies, our model can be used to characterize tissues in other valves of the heart.

摘要

三尖瓣是一种房室瓣,可防止心室收缩时血液从右心室回流到右心房。研究三尖瓣小叶机械诱导的微观结构改变很重要,因为这有助于理解瓣膜疾病和开发新的工程组织替代物。细胞外基质 (ECM) 纤维网络的结构和组成与三尖瓣的整体生物力学功能密切相关。在这项研究中,我们进行了实验并实施了一种多尺度建模方法,以预测在受控加载环境下组织水平机械响应的 ECM 微观结构变化。特别是,我们使用双向力学测试方法对猪前叶瓣的样本进行了宏观尺度的特征描述。然后,我们生成了一个三维有限元模型,根据从小角度光散射获得的微观结构架构的特性,将对应纤维网络的计算表示纳入其中。使用五种不同的双向边界条件,我们进行了迭代模拟,以获得整体 R 值为 0.93 的模型参数。我们观察到机械加载可以显著改变潜在的 ECM 结构。例如,当相对各向同性的纤维网络(各向异性指数α值为 28%)经受机械加载时,其变得明显各向异性(α值为 40%)。我们还观察到,与组织水平相比,在 ECM/纤维水平上,机械应变的分布方式不同。本研究中提出的方法有可能在病理生理改变的生物力学和结构条件下实施,并深入了解三尖瓣的机械生物学。意义声明:量化在修改后的加载环境下三尖瓣小叶异常的细胞/ECM 水平变形非常重要,因为据信这与瓣膜重塑反应有关。例如,开发维持/模拟 ECM 水平机械平衡的手术程序或工程组织替代物可能会导致更持久的结果。为了量化瓣叶变形,我们构建了一个多尺度框架,包括无序 ECM 成分和有序纤维的贡献,该框架可以预测三尖瓣瓣叶在生理加载条件下的行为,无论是在组织水平还是在 ECM 水平。除了对三尖瓣病理学进行进一步的深入研究外,我们的模型还可以用于表征心脏其他瓣膜的组织。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验