Suppr超能文献

新的基于图论的多模态方法利用时间和结构相关性揭示精神分裂症患者丘脑-皮层网络的破坏。

New Graph-Theoretical-Multimodal Approach Using Temporal and Structural Correlations Reveals Disruption in the Thalamo-Cortical Network in Patients with Schizophrenia.

机构信息

Department of Mathematics, Politecnico di Milano, Milan, Italy.

Clinic and Policlinic for Psychiatry and Psychotherapy, University Medical Center Hamburg - Eppendorf, Hamburg, Germany.

出版信息

Brain Connect. 2019 Dec;9(10):760-769. doi: 10.1089/brain.2018.0654. Epub 2019 Oct 7.

Abstract

Schizophrenia has been understood as a network disease with altered functional and structural connectivity in multiple brain networks compatible to the extremely broad spectrum of psychopathological, cognitive, and behavioral symptoms in this disorder. When building brain networks, functional and structural networks are typically modeled independently: Functional network models are based on temporal correlations among brain regions, whereas structural network models are based on anatomical characteristics. Combining both features may give rise to more realistic and reliable models of brain networks. In this study, we applied a new flexible graph-theoretical-multimodal model called FD (F, the functional connectivity matrix, and D, the structural matrix) to construct brain networks combining functional, structural, and topological information of magnetic resonance imaging (MRI) measurements (structural and resting-state imaging) to patients with schizophrenia ( = 35) and matched healthy individuals ( = 41). As a reference condition, the traditional pure functional connectivity (pFC) analysis was carried out. By using the FD model, we found disrupted connectivity in the thalamo-cortical network in schizophrenic patients, whereas the pFC model failed to extract group differences after multiple comparison correction. We interpret this observation as evidence that the FD model is superior to conventional connectivity analysis, by stressing relevant features of the whole-brain connectivity, including functional, structural, and topological signatures. The FD model can be used in future research to model subtle alterations of functional and structural connectivity, resulting in pronounced clinical syndromes and major psychiatric disorders. Lastly, FD is not limited to the analysis of resting-state functional MRI, and it can be applied to electro-encephalography, magneto-encephalography, etc.

摘要

精神分裂症被理解为一种网络疾病,在多个大脑网络中存在功能和结构连接的改变,这些改变与该障碍中极其广泛的精神病理学、认知和行为症状相吻合。在构建大脑网络时,功能和结构网络通常是独立建模的:功能网络模型基于大脑区域之间的时间相关性,而结构网络模型基于解剖特征。结合这两个特征可能会产生更真实和可靠的大脑网络模型。在这项研究中,我们应用了一种新的灵活的图论多模态模型,称为 FD(F,功能连接矩阵,和 D,结构矩阵),将磁共振成像(MRI)测量的功能、结构和拓扑信息结合起来构建大脑网络(结构和静息态成像),用于精神分裂症患者(n=35)和匹配的健康个体(n=41)。作为参考条件,我们进行了传统的纯功能连接(pFC)分析。通过使用 FD 模型,我们发现精神分裂症患者的丘脑-皮质网络连接中断,而 pFC 模型在多次比较校正后未能提取出组间差异。我们将这一观察结果解释为 FD 模型优于传统连接分析的证据,通过强调全脑连接的相关特征,包括功能、结构和拓扑特征。FD 模型可用于未来的研究,以模拟功能和结构连接的细微改变,从而导致明显的临床综合征和主要精神障碍。最后,FD 不仅限于静息态功能 MRI 的分析,它也可以应用于脑电图、脑磁图等。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验