文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 fMRI 的低维嵌入技术对精神分裂症静息态功能连接模式的判别分析。

Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI.

机构信息

College of Mechatronics and Automation, National University of Defense Technology, Changsha, Hunan 410073, China.

出版信息

Neuroimage. 2010 Feb 15;49(4):3110-21. doi: 10.1016/j.neuroimage.2009.11.011. Epub 2009 Nov 18.


DOI:10.1016/j.neuroimage.2009.11.011
PMID:19931396
Abstract

Recently, a functional disconnectivity hypothesis of schizophrenia has been proposed for the physiological explanation of behavioral syndromes of this complex mental disorder. In this paper, we aim at further examining whether syndromes of schizophrenia could be decoded by some special spatiotemporal patterns of resting-state functional connectivity. We designed a data-driven classifier based on machine learning to extract highly discriminative functional connectivity features and to discriminate schizophrenic patients from healthy controls. The proposed classifier consisted of two separate steps. First, we used feature selection based on a correlation coefficient method to extract highly discriminative regions and construct the optimal feature set for classification. Then, an unsupervised-learning classifier combining low-dimensional embedding and self-organized clustering of fMRI was trained to discriminate schizophrenic patients from healthy controls. The performance of the classifier was tested using a leave-one-out cross-validation strategy. The experimental results demonstrated not only high classification accuracy (93.75% for schizophrenic patients, 75.0% for healthy controls), but also good generalization and stability with respect to the number of extracted features. In addition, some functional connectivities between certain brain regions of the cerebellum and frontal cortex were found to exhibit the highest discriminative power, which might provide further evidence for the cognitive dysmetria hypothesis of schizophrenia. This primary study demonstrated that machine learning could extract exciting new information from the resting-state activity of a brain with schizophrenia, which might have potential ability to improve current diagnosis and treatment evaluation of schizophrenia.

摘要

最近,一种精神分裂症的功能连接缺失假说被提出,用于解释这种复杂精神障碍的行为综合征的生理机制。在本文中,我们旨在进一步研究精神分裂症的综合征是否可以通过静息态功能连接的某些特殊时空模式来解码。我们设计了一个基于机器学习的数据驱动分类器,以提取高度有区分性的功能连接特征,并将精神分裂症患者与健康对照组区分开来。所提出的分类器由两个独立的步骤组成。首先,我们使用基于相关系数方法的特征选择来提取高度有区分性的区域,并构建分类的最佳特征集。然后,训练了一个结合低维嵌入和 fMRI 自组织聚类的无监督学习分类器,以区分精神分裂症患者和健康对照组。使用留一交叉验证策略测试了分类器的性能。实验结果不仅证明了分类的高准确性(精神分裂症患者为 93.75%,健康对照组为 75.0%),而且在提取特征的数量方面具有良好的泛化性和稳定性。此外,还发现小脑和额叶某些脑区之间的某些功能连接具有最高的区分能力,这可能为精神分裂症的认知运动障碍假说提供了进一步的证据。这项初步研究表明,机器学习可以从患有精神分裂症的大脑的静息状态活动中提取令人兴奋的新信息,这可能有潜力改善精神分裂症的当前诊断和治疗评估。

相似文献

[1]
Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI.

Neuroimage. 2009-11-18

[2]
Discriminant analysis of functional connectivity patterns on Grassmann manifold.

Neuroimage. 2011-4-2

[3]
Functional dysconnectivity of the dorsolateral prefrontal cortex in first-episode schizophrenia using resting-state fMRI.

Neurosci Lett. 2007-5-7

[4]
COMPARE: classification of morphological patterns using adaptive regional elements.

IEEE Trans Med Imaging. 2007-1

[5]
Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns.

Neuroimage. 2008-10-15

[6]
Fisher discriminative analysis of resting-state brain function for attention-deficit/hyperactivity disorder.

Neuroimage. 2008-3-1

[7]
Analyzing the connectivity between regions of interest: an approach based on cluster Granger causality for fMRI data analysis.

Neuroimage. 2010-6-1

[8]
Temporally anticorrelated brain networks during working memory performance reveal aberrant prefrontal and hippocampal connectivity in patients with schizophrenia.

Prog Neuropsychopharmacol Biol Psychiatry. 2009-8-8

[9]
Detection of PCC functional connectivity characteristics in resting-state fMRI in mild Alzheimer's disease.

Behav Brain Res. 2009-1-30

[10]
Regional structural characterization of the brain of schizophrenia patients.

Acad Radiol. 2005-10

引用本文的文献

[1]
A review of machine learning applications in heart health.

Biomed Eng Online. 2025-8-11

[2]
The neurofucntional abnormalities of temporal gyrus underly impaired sensory attenuation in schizophrenia during action-outcome contingent paradigm.

Sci Rep. 2025-7-20

[3]
Methamphetamine modulates functional connectivity signatures of sustained attention and arousal.

bioRxiv. 2025-5-21

[4]
A specific model of resting-state functional brain network in MRI-negative temporal lobe epilepsy.

Heliyon. 2025-2-13

[5]
A simple but tough-to-beat baseline for fMRI time-series classification.

Neuroimage. 2024-12-1

[6]
Mapping individual cortico-basal ganglia-thalamo-cortical circuits integrating structural and functional connectome: implications for upper limb motor impairment poststroke.

MedComm (2020). 2024-10-6

[7]
Measuring functional connectivity in frequency-domain helps to better characterize brain function.

Hum Brain Mapp. 2024-7-15

[8]
Cerebellar transcranial magnetic stimulation in psychotic disorders: intermittent, continuous, and sham theta-burst stimulation on time perception and symptom severity.

Front Psychiatry. 2023-11-13

[9]
Sampling inequalities affect generalization of neuroimaging-based diagnostic classifiers in psychiatry.

BMC Med. 2023-7-3

[10]
Brain subnetworks most sensitive to alterations of functional connectivity in Schizophrenia: a data-driven approach.

Front Neuroinform. 2023-5-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索