Department of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland; Soil Institute, Sichuan Academy of Environmental Sciences, 610041 Chengdu, China.
Department of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland.
Environ Int. 2019 Sep;130:104891. doi: 10.1016/j.envint.2019.06.001. Epub 2019 Jun 22.
Fungi are well known to strongly interact with metals, thereby influencing metal biogeochemistry in the terrestrial environment. To assess and quantify potential fungi-vanadium (V) interactions, Amanita muscaria, Armillaria cepistipes, Xerocomus badius and Bjerkandera adusta were cultured in media containing soluble V (VOSO or NaVO) or solid-phase V of different chemical forms and oxidation state (VO, VO, VO, or V-Ti magnetite slag). All fungi underwent physiological and structural changes, as revealed by alterations in FT-IR peak positions and intensities relative to the control, and morphological changes of mycelia, as observed by scanning electron microscopy. The diametric growth size generally decreased with decreasing oxidation state of V and with increasing concentrations of VOSO and NaVO, implying that V toxicity is dependent on V speciation. The tolerance index, the ratio of treated and control mycelium (dry weight), shows different tendencies, suggesting additional factors influencing fungi weight, such as the formation of extrahyphal crystals. Vanadium accumulation from VOSO and NaVO medium in all fungi (up to 51.3 mg g) shows the potential of fungi to immobilise soluble V, thereby reducing its impacts on environmental and human health. Uptake and accumulation of V in slag was insignificant, reflecting the association of slag V with insoluble crystalline materials. The fungal accumulation of V in medium amended with V-oxides demonstrates the ability of fungi to solubilise solid-phase V compounds, thereby introducing previously immobile V into the V biogeochemical cycle and into the food chain where it may impact ecological and human health. A.muscaria lowered the pH of the medium substantially during cultivation, indicating acidolysis and complexolysis via excretion of organic acids (e.g. oxalic acid). Oxidation of VOSO was observed by a colour change of the medium to yellow during B. adusta cultivation, revealing the role of fungally-mediated redox transformation in V (im)mobilisation. The calculated removal efficiencies of soluble V were 40-90% for A. cepistipes and X. badius, but a much lower recovery (0-20%) was observed from V oxides and slag (0-20%) by all fungi. This suggests the probable application of fungi for bio-remediation of mobile/soluble V in contaminated soils but not of V incorporated in the lattice of soil minerals.
真菌与金属有很强的相互作用,从而影响陆地环境中的金属生物地球化学。为了评估和量化潜在的真菌-钒(V)相互作用,我们在含有可溶性 V(VOSO 或 NaVO)或不同化学形式和氧化态(VO、VO、VO、或 V-Ti 磁铁矿渣)的固体相 V 的培养基中培养了鹅膏菌、阿利马香菇、牛肝菌和木霉。所有真菌都经历了生理和结构上的变化,这表现在与对照相比,FT-IR 峰位置和强度的变化,以及通过扫描电子显微镜观察到菌丝体形态的变化。直径生长大小通常随着 V 的氧化态降低和 VOSO 和 NaVO 浓度增加而减小,这表明 V 的毒性取决于 V 的形态。处理和对照菌丝(干重)的耐受指数比表明,除了 V 形态外,还有其他因素影响真菌的重量,例如外菌丝晶体的形成。所有真菌从 VOSO 和 NaVO 培养基中积累 V(高达 51.3mg/g)表明真菌有潜力固定可溶性 V,从而降低其对环境和人类健康的影响。在添加 V 氧化物的培养基中,V 的吸收和积累微不足道,这反映了渣 V 与不溶性结晶材料的结合。真菌在添加 V 氧化物的培养基中对 V 的积累表明真菌有能力溶解固体相 V 化合物,从而将以前不能移动的 V 引入 V 生物地球化学循环和食物链中,从而可能对生态和人类健康产生影响。鹅膏菌在培养过程中大大降低了培养基的 pH 值,这表明通过有机酸(如草酸)的排泄进行酸解和络合。在木霉培养过程中,培养基的颜色变黄,表明真菌介导的氧化还原转化在 V(固定/移动)中的作用。A. cepistipes 和 X. badius 对可溶性 V 的去除效率为 40-90%,但所有真菌从 V 氧化物和渣中回收的效率要低得多(0-20%)。这表明真菌可能适用于生物修复受污染土壤中移动/可溶性 V,但不适用于土壤矿物质晶格中掺入的 V。