Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, Chile.
Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago, Chile; Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Facultad de Física, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Santiago, Chile.
Bioresour Technol. 2019 Oct;289:121645. doi: 10.1016/j.biortech.2019.121645. Epub 2019 Jun 18.
Microalgae are affected by the amount of light received. This parameter can be controlled by changing the light source and altering the reactor used for their growth. In this study, the effect of different colors of light was analyzed in the growth of Dunaliella tertiolecta, observing that blue lighting systems reached a biomass 10 times superior to the one generated by orange lightning systems. This growth effect was seen in a novel tubular internally illuminated photobioreactor. In this photobioreactor, the blue reactor produced 1.7 times the biomass of the red reactor, with the particularity that the latter showed an oscillating behavior in its growth. From irradiance models, the light dispersion coefficient is higher than the absorption coefficient when using red light. In contrast, with blue light, the value of the scattering coefficient is almost null.
微藻受光照量的影响。该参数可以通过改变光源和改变用于其生长的反应器来控制。在这项研究中,分析了不同颜色的光对杜氏盐藻生长的影响,结果表明,蓝光系统的生物量是橙光系统的 10 倍。这种生长效应是在一种新颖的管内照明光生物反应器中观察到的。在这种光生物反应器中,蓝色反应器产生的生物量是红色反应器的 1.7 倍,后者的生长表现出波动行为。从辐照度模型来看,当使用红光时,光散射系数高于吸收系数。相比之下,当使用蓝光时,散射系数的值几乎为零。