Suppr超能文献

用于微藻培养和一氧化碳生物固定的新型加压平板光生物反应器的设计与表征。

Design and characterization of a new pressurized flat panel photobioreactor for microalgae cultivation and CO bio-fixation.

作者信息

Carone Michele, Alpe Davis, Costantino Valentina, Derossi Clara, Occhipinti Andrea, Zanetti Mariachiara, Riggio Vincenzo A

机构信息

Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy.

Photo B-Otic S.r.l., Via Paolo Veronese 202, 10148, Torino, Italy.

出版信息

Chemosphere. 2022 Nov;307(Pt 2):135755. doi: 10.1016/j.chemosphere.2022.135755. Epub 2022 Jul 19.

Abstract

Microalgae-based biorefinery processes are gaining particular importance as a biotechnological tool for direct carbon dioxide fixation and production of high-quality biomass and energy feedstock for different industrial markets. However, despite the many technological advances in photobioreactor designs and operations, microalgae cultivation is still limited due to the low yields achieved in open systems and to the high investment and operation costs of closed photobioreactors. In this work, a new alveolar flat panel photobioreactor was designed and characterized with the aim of achieving high microalgae productivities and CO bio-fixation rates. Moreover, the energy efficiency of the employed pump-assisted hydraulic circuit was evaluated. The 1.3 cm thick alveolar flat-panels enhance the light utilization, whereas the hydraulic design of the photobioreactor aims to improve the global CO gas-liquid mass transfer coefficient (kaCO). The mixing time, liquid flow velocity, and kaCO as well as the uniformity matrix of the artificial lighting source were experimentally calculated. The performance of the system was tested by cultivating the green microalga Acutodesmus obliquus. A volumetric biomass concentration equal to 1.9 g L was achieved after 7 days under controlled indoor cultivation conditions with a CO bio-fixation efficiency of 64% of total injected CO. The (gross) energy consumption related to substrate handling was estimated to be between 27 and 46 Wh m, without any cost associated to CO injection and O degassing. The data suggest that this pilot-scale cultivation system may constitute a relevant technology in the development of microalgae-based industrial scenario for CO mitigation and biomass production.

摘要

基于微藻的生物精炼工艺作为一种生物技术工具,在直接固定二氧化碳以及为不同工业市场生产高质量生物质和能源原料方面正变得尤为重要。然而,尽管光生物反应器的设计和操作取得了许多技术进步,但由于开放系统中产量较低以及封闭式光生物反应器的高投资和运营成本,微藻培养仍然受到限制。在这项工作中,设计并表征了一种新型肺泡平板光生物反应器,旨在实现高微藻生产率和二氧化碳生物固定率。此外,还评估了所采用的泵辅助液压回路的能源效率。1.3厘米厚的肺泡平板提高了光利用率,而光生物反应器的液压设计旨在提高整体二氧化碳气液传质系数(kaCO)。通过实验计算了混合时间、液体流速、kaCO以及人工光源的均匀性矩阵。通过培养绿色微藻斜生栅藻来测试该系统的性能。在室内受控培养条件下,7天后实现了体积生物量浓度为1.9克/升,二氧化碳生物固定效率为注入总二氧化碳的64%。与底物处理相关的(总)能源消耗估计在27至46瓦时/立方米之间,且没有与二氧化碳注入和氧气脱气相关的任何成本。数据表明,这种中试规模的培养系统可能成为基于微藻的工业场景开发中用于减少二氧化碳排放和生物质生产的一项相关技术。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验