Suppr超能文献

应用于 HMPV 和 RSV 数据的时间序列非高斯贝叶斯双变量模型:肯尼亚达达阿布的案例。

Time series non-Gaussian Bayesian bivariate model applied to data on HMPV and RSV: a case of Dadaab in Kenya.

机构信息

School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa.

, Nairobi, Kenya.

出版信息

BMC Public Health. 2019 Jun 24;19(1):807. doi: 10.1186/s12889-019-7036-2.

Abstract

BACKGROUND

Human metapneumovirus (HMPV) have similar symptoms to those caused by the respiratory syncytial virus (RSV). The modes of transmission and dynamics of time series data still remain poorly understood. Climatic factors have long been suspected to be implicated in impacting on the number of cases for these epidemics. Currently, only a few models satisfactorily capture the dynamics of time series data of these two viruses. Our objective was to assess the presence of influence of high incidences between the viruses and to ascertain whether higher incidences of one virus are influenced by the other.

METHODS

In this study, we used a negative binomial model to investigate the relationship between RSV and HMPV while adjusting for climatic factors. We specifically aimed at establishing the heterogeneity in the autoregressive effect to account for the influence between these viruses.

RESULTS

In this study, our findings showed that RSV incidence contributed to the severity of HMPV incidence. This was achieved through comparison of 12 models with different structures, including those with and without interaction between climatic factors. The models with climatic factors out-performed those without.

CONCLUSIONS

The study has improved our understanding of the dynamics of RSV and HMPV in relation to climatic cofactors thereby setting a platform to devise better intervention measures to combat the epidemics. We conclude that preventing and controlling RSV infection subsequently reduces the incidence of HMPV.

摘要

背景

人类偏肺病毒(HMPV)与呼吸道合胞病毒(RSV)引起的症状相似。传播方式和时间序列数据的动态仍然知之甚少。气候因素长期以来一直被怀疑对这些流行病的病例数量有影响。目前,只有少数模型能令人满意地捕捉到这两种病毒的时间序列数据的动态。我们的目的是评估病毒之间高发病率的存在,并确定一种病毒的高发病率是否受到另一种病毒的影响。

方法

在这项研究中,我们使用负二项式模型来研究 RSV 和 HMPV 之间的关系,同时调整了气候因素。我们特别旨在建立自回归效应的异质性,以说明这些病毒之间的影响。

结果

在这项研究中,我们的发现表明 RSV 的发病率会导致 HMPV 发病率的严重程度增加。这是通过比较具有不同结构的 12 个模型来实现的,包括那些具有和不具有气候因素之间相互作用的模型。具有气候因素的模型表现优于没有气候因素的模型。

结论

该研究提高了我们对 RSV 和 HMPV 与气候协变量之间关系的动态的理解,从而为制定更好的干预措施以对抗流行病奠定了基础。我们的结论是,预防和控制 RSV 感染会降低 HMPV 的发病率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a4c/6591850/75b25bf2b2d6/12889_2019_7036_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验