Zhang Guangjian, Preacher Kristopher J, Hattori Minami, Jiang Ge, Trichtinger Lauren A
University of Notre Dame, IN, USA.
Vanderbilt University, Nashville, TN, USA.
Appl Psychol Meas. 2019 Jul;43(5):360-373. doi: 10.1177/0146621618798669. Epub 2018 Sep 14.
This article is concerned with standard errors (s) and confidence intervals (CIs) for exploratory factor analysis (EFA) in different situations. The authors adapt a sandwich estimator for EFA parameters to accommodate nonnormal data and imperfect models, factor extraction with maximum likelihood and ordinary least squares, and factor rotation with CF-varimax, CF-quartimax, geomin, or target rotation. They illustrate the sandwich s and CIs using nonnormal continuous data and ordinal data. They also compare estimates and CIs of the conventional information method, the sandwich method, and the bootstrap method using simulated data. The sandwich method and the bootstrap method are more satisfactory than the information method for EFA with nonnormal data and model approximation error.
本文关注不同情况下探索性因子分析(EFA)的标准误差(s)和置信区间(CIs)。作者采用一种三明治估计量来估计EFA参数,以适应非正态数据和不完美模型、最大似然法和普通最小二乘法的因子提取,以及CF-方差极大法、CF-四次极大法、斜交最小平方法或目标旋转法的因子旋转。他们使用非正态连续数据和有序数据说明了三明治标准误差和置信区间。他们还使用模拟数据比较了传统信息方法、三明治方法和自助法的估计值和置信区间。对于具有非正态数据和模型近似误差的EFA,三明治方法和自助法比信息方法更令人满意。