Yuan Ke-Hai, Hayashi Kentaro
Department of Psychology, University of Notre Dame, IN 46556, USA.
Br J Math Stat Psychol. 2006 Nov;59(Pt 2):397-417. doi: 10.1348/000711005X85896.
Commonly used formulae for standard error (SE) estimates in covariance structure analysis are derived under the assumption of a correctly specified model. In practice, a model is at best only an approximation to the real world. It is important to know whether the estimates of SEs as provided by standard software are consistent when a model is misspecified, and to understand why if not. Bootstrap procedures provide nonparametric estimates of SEs that automatically account for distribution violation. It is also necessary to know whether bootstrap estimates of SEs are consistent. This paper studies the relationship between the bootstrap estimates of SEs and those based on asymptotics. Examples are used to illustrate various versions of asymptotic variance-covariance matrices and their validity. Conditions for the consistency of the bootstrap estimates of SEs are identified and discussed. Numerical examples are provided to illustrate the relationship of different estimates of SEs and covariance matrices.
协方差结构分析中常用的标准误差(SE)估计公式是在模型设定正确的假设下推导出来的。在实际中,模型充其量只是对现实世界的一种近似。了解当模型设定错误时,标准软件提供的SE估计是否一致,以及如果不一致的原因,这很重要。自助法程序提供了能自动考虑分布违反情况的SE非参数估计。还需要知道SE的自助法估计是否一致。本文研究了SE的自助法估计与基于渐近性的估计之间的关系。通过实例来说明渐近方差 - 协方差矩阵的各种版本及其有效性。确定并讨论了SE自助法估计一致性的条件。提供了数值示例来说明SE和协方差矩阵不同估计之间的关系。