Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany.
Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.
Chemistry. 2019 Oct 11;25(57):13049-13069. doi: 10.1002/chem.201902210. Epub 2019 Aug 22.
Liquid-liquid phase separation (LLPS) of proteins and other biomolecules play a critical role in the organization of extracellular materials and membrane-less compartmentalization of intra-organismal spaces through the formation of condensates. Structural properties of such mesoscopic droplet-like states were studied by spectroscopy, microscopy, and other biophysical techniques. The temperature dependence of biomolecular LLPS has been studied extensively, indicating that phase-separated condensed states of proteins can be stabilized or destabilized by increasing temperature. In contrast, the physical and biological significance of hydrostatic pressure on LLPS is less appreciated. Summarized here are recent investigations of protein LLPS under pressures up to the kbar-regime. Strikingly, for the cases studied thus far, LLPSs of both globular proteins and intrinsically disordered proteins/regions are typically more sensitive to pressure than the folding of proteins, suggesting that organisms inhabiting the deep sea and sub-seafloor sediments, under pressures up to 1 kbar and beyond, have to mitigate this pressure-sensitivity to avoid unwanted destabilization of their functional biomolecular condensates. Interestingly, we found that trimethylamine-N-oxide (TMAO), an osmolyte upregulated in deep-sea fish, can significantly stabilize protein droplets under pressure, pointing to another adaptive advantage for increased TMAO concentrations in deep-sea organisms besides the osmolyte's stabilizing effect against protein unfolding. As life on Earth might have originated in the deep sea, pressure-dependent LLPS is pertinent to questions regarding prebiotic proto-cells. Herein, we offer a conceptual framework for rationalizing the recent experimental findings and present an outline of the basic thermodynamics of temperature-, pressure-, and osmolyte-dependent LLPS as well as a molecular-level statistical mechanics picture in terms of solvent-mediated interactions and void volumes.
液-液相分离(LLPS)在蛋白质和其他生物分子中起着关键作用,通过形成凝聚物,将细胞外物质和无膜细胞器空间进行组织。通过光谱学、显微镜和其他生物物理技术研究了这种介观液滴状状态的结构特性。广泛研究了生物分子 LLPS 的温度依赖性,表明通过增加温度可以稳定或破坏蛋白质的相分离凝聚状态。相比之下,静水压力对 LLPS 的物理和生物学意义的认识还不够充分。本文总结了迄今为止在高达千巴压力范围内研究蛋白质 LLPS 的最新研究。引人注目的是,对于迄今为止研究的情况,球状蛋白和固有无序蛋白/区域的 LLPS 通常比蛋白质的折叠对压力更敏感,这表明生活在深海和海底沉积物中的生物体,在高达 1 kbar 及以上的压力下,必须减轻这种压力敏感性,以避免其功能性生物凝聚物的意外失稳。有趣的是,我们发现三甲基胺 N-氧化物(TMAO),一种在深海鱼类中上调的渗透物,可在压力下显著稳定蛋白质液滴,这表明深海生物中 TMAO 浓度的增加除了具有抗蛋白展开的稳定作用外,还有另一个适应优势。由于地球上的生命可能起源于深海,因此压力依赖性 LLPS 与有关前生物原细胞的问题有关。在此,我们提供了一个概念框架来合理化最近的实验发现,并提出了温度、压力和渗透物依赖性 LLPS 的基本热力学以及溶剂介导相互作用和空隙体积方面的分子水平统计力学图像的概述。