Suppr超能文献

新一代预测模型:混合模型在治疗性蛋白制造工艺中的增值。

A new generation of predictive models: The added value of hybrid models for manufacturing processes of therapeutic proteins.

机构信息

Department of Chemistry and Applied Biosciences, Institute of Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland.

DataHow AG, Zurich, Switzerland.

出版信息

Biotechnol Bioeng. 2019 Oct;116(10):2540-2549. doi: 10.1002/bit.27097. Epub 2019 Jul 21.

Abstract

Due to the lack of complete understanding of metabolic networks and reaction pathways, establishing a universal mechanistic model for mammalian cell culture processes remains a challenge. Contrarily, data-driven approaches for modeling these processes lack extrapolation capabilities. Hybrid modeling is a technique that exploits the synergy between the two modeling methods. Although mammalian cell cultures are among the most relevant processes in biotechnology and indeed looks ideal for hybrid modeling, their application has only been proposed but never developed in the literature. This study provides a quantitative assessment of the improvement brought by hybrid models with respect to the state-of-the-art statistical predictive models in the context of therapeutic protein production. This is illustrated using a dataset obtained from a 3.5 L fed-batch experiment. With the goal to robustly define the process design space, hybrid models reveal a superior capability to predict the time evolution of different process variables using only the initial and process conditions in comparison to the statistical models. Hybrid models not only feature more accurate prediction results but also demonstrate better robustness and extrapolation capabilities. For the future application, this study highlights the added value of hybrid modeling for model-based process optimization and design of experiments.

摘要

由于对代谢网络和反应途径缺乏全面了解,为哺乳动物细胞培养过程建立通用的机理模型仍然是一个挑战。相反,用于对这些过程进行建模的数据驱动方法缺乏外推能力。混合建模是一种利用两种建模方法协同作用的技术。尽管哺乳动物细胞培养是生物技术中最相关的过程之一,实际上非常适合混合建模,但在文献中从未提出过也从未开发过其应用。本研究在治疗性蛋白生产的背景下,对混合模型相对于最先进的统计预测模型在提高方面进行了定量评估。这是通过使用从 3.5L 分批补料实验中获得的数据集来说明的。为了稳健地定义过程设计空间,与统计模型相比,混合模型仅使用初始条件和过程条件,就具有更好的能力来预测不同过程变量的时间演变。混合模型不仅具有更准确的预测结果,而且还表现出更好的稳健性和外推能力。对于未来的应用,本研究强调了混合建模在基于模型的过程优化和实验设计中的附加价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验