Suppr超能文献

无创标志物独立的高通量分析微生理人胰腺芯片模型。

Non-invasive marker-independent high content analysis of a microphysiological human pancreas-on-a-chip model.

机构信息

Dept. of Women's Health, Research Institute of Women's Health, Eberhard Karls University Tübingen, Germany.

Dept. of Women's Health, Research Institute of Women's Health, Eberhard Karls University Tübingen, Germany; The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany.

出版信息

Matrix Biol. 2020 Jan;85-86:205-220. doi: 10.1016/j.matbio.2019.06.008. Epub 2019 Jun 22.

Abstract

The increasing prevalence of diabetes, its heterogeneity, and the limited number of treatment options drive the need for physiologically relevant assay platforms with human genetic background that have the potential to improve mechanistic understanding and e\xpedite diabetes-related research and treatment. In this study, we developed an endocrine pancreas-on-a-chip model based on a tailored microfluidic platform, which enables self-guided trapping of single human pseudo-islets. Continuous, low-shear perfusion provides a physiologically relevant microenvironment especially important for modeling and monitoring of the endocrine function as well as sufficient supply with nutrients and oxygen. Human pseudo-islets, generated from the conditionally immortalized EndoC-βH3 cell line, were successfully injected by hydrostatic pressure-driven flow without altered viability. To track insulin secretion kinetics in response to glucose stimulation in a time-resolved manner, dynamic sampling of the supernatant as well as non-invasive real-time monitoring using Raman microspectroscopy was established on-chip. Dynamic sampling indicated a biphasic glucose-stimulated insulin response. Raman microspectroscopy allowed to trace glucose responsiveness in situ and to visualize different molecular structures such as lipids, mitochondria and nuclei. In-depth spectral analyses demonstrated a glucose stimulation-dependent, increased mitochondrial activity, and a switch in lipid composition of insulin secreting vesicles, supporting the high performance of our pancreas-on-a-chip model.

摘要

糖尿病的患病率不断上升、其异质性以及治疗选择有限,这都推动了人们对具有人类遗传背景的、能够改善对其发病机制的理解并加速糖尿病相关研究和治疗的生理相关检测平台的需求。在本研究中,我们开发了一种基于定制微流控平台的内分泌胰腺芯片模型,该模型能够实现对单个人类拟胰腺的自动捕获。连续、低剪切流灌注提供了一种生理相关的微环境,对于建模和监测内分泌功能以及充分供应营养物质和氧气尤其重要。通过液压驱动流,成功地将源自条件永生化的 EndoC-βH3 细胞系的人类拟胰腺注入芯片,而不会改变其活力。为了以时间分辨的方式跟踪葡萄糖刺激下的胰岛素分泌动力学,我们在芯片上建立了用于动态采集上清液的方法以及用于非侵入式实时监测的 Raman 微光谱法。动态采集表明葡萄糖刺激呈双相胰岛素反应。Raman 微光谱法能够在原位追踪葡萄糖反应性,并可视化不同的分子结构,如脂类、线粒体和细胞核。深入的光谱分析表明,线粒体活性随葡萄糖刺激而增加,胰岛素分泌囊泡的脂质组成发生变化,这支持了我们的胰腺芯片模型的高性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验