Mahler Ronald
Random Sets LLC, Eagan, MN 55122, USA.
Sensors (Basel). 2019 Jun 24;19(12):2818. doi: 10.3390/s19122818.
The finite-set statistics (FISST) foundational approach to multitarget tracking and information fusion has inspired work by dozens of research groups in at least 20 nations; and FISST publications have been cited tens of thousands of times. This review paper addresses a recent and cutting-edge aspect of this research: exact closed-form-and, therefore, provably Bayes-optimal-approximations of the multitarget Bayes filter. The five proposed such filters-generalized labeled multi-Bernoulli (GLMB), labeled multi-Bernoulli mixture (LMBM), and three Poisson multi-Bernoulli mixture (PMBM) filter variants-are assessed in depth. This assessment includes a theoretically rigorous, but intuitive, statistical theory of "undetected targets", and concrete formulas for the posterior undetected-target densities for the "standard" multitarget measurement model.
有限集统计(FISST)基础方法用于多目标跟踪和信息融合,激发了至少20个国家数十个研究团队的研究工作;FISST相关出版物已被引用数万次。这篇综述论文探讨了该研究中一个最新的前沿领域:多目标贝叶斯滤波器的精确闭式(因此可证明是贝叶斯最优)近似。对所提出的五种此类滤波器——广义标记多伯努利(GLMB)、标记多伯努利混合(LMBM)以及三种泊松多伯努利混合(PMBM)滤波器变体——进行了深入评估。该评估包括一个理论上严谨但直观的“未检测到目标”统计理论,以及针对“标准”多目标测量模型的后验未检测到目标密度的具体公式。