Suppr超能文献

精确的闭式多目标贝叶斯滤波器

Exact Closed-Form Multitarget Bayes Filters.

作者信息

Mahler Ronald

机构信息

Random Sets LLC, Eagan, MN 55122, USA.

出版信息

Sensors (Basel). 2019 Jun 24;19(12):2818. doi: 10.3390/s19122818.

Abstract

The finite-set statistics (FISST) foundational approach to multitarget tracking and information fusion has inspired work by dozens of research groups in at least 20 nations; and FISST publications have been cited tens of thousands of times. This review paper addresses a recent and cutting-edge aspect of this research: exact closed-form-and, therefore, provably Bayes-optimal-approximations of the multitarget Bayes filter. The five proposed such filters-generalized labeled multi-Bernoulli (GLMB), labeled multi-Bernoulli mixture (LMBM), and three Poisson multi-Bernoulli mixture (PMBM) filter variants-are assessed in depth. This assessment includes a theoretically rigorous, but intuitive, statistical theory of "undetected targets", and concrete formulas for the posterior undetected-target densities for the "standard" multitarget measurement model.

摘要

有限集统计(FISST)基础方法用于多目标跟踪和信息融合,激发了至少20个国家数十个研究团队的研究工作;FISST相关出版物已被引用数万次。这篇综述论文探讨了该研究中一个最新的前沿领域:多目标贝叶斯滤波器的精确闭式(因此可证明是贝叶斯最优)近似。对所提出的五种此类滤波器——广义标记多伯努利(GLMB)、标记多伯努利混合(LMBM)以及三种泊松多伯努利混合(PMBM)滤波器变体——进行了深入评估。该评估包括一个理论上严谨但直观的“未检测到目标”统计理论,以及针对“标准”多目标测量模型的后验未检测到目标密度的具体公式。

相似文献

1
Exact Closed-Form Multitarget Bayes Filters.
Sensors (Basel). 2019 Jun 24;19(12):2818. doi: 10.3390/s19122818.
2
"Statistics 103" for Multitarget Tracking.
Sensors (Basel). 2019 Jan 8;19(1):202. doi: 10.3390/s19010202.
3
Extended Target Marginal Distribution Poisson Multi-Bernoulli Mixture Filter.
Sensors (Basel). 2020 Sep 20;20(18):5387. doi: 10.3390/s20185387.
5
GLMB Tracker with Partial Smoothing.
Sensors (Basel). 2019 Oct 12;19(20):4419. doi: 10.3390/s19204419.
6
Tracking Multiple Marine Ships via Multiple Sensors with Unknown Backgrounds.
Sensors (Basel). 2019 Nov 18;19(22):5025. doi: 10.3390/s19225025.
7
A Computationally Efficient Labeled Multi-Bernoulli Smoother for Multi-Target Tracking.
Sensors (Basel). 2019 Sep 28;19(19):4226. doi: 10.3390/s19194226.
9
Time-Matching Random Finite Set-Based Filter for Radar Multi-Target Tracking.
Sensors (Basel). 2018 Dec 13;18(12):4416. doi: 10.3390/s18124416.
10
Constrained Multi-Sensor Control Using a Multi-Target MSE Bound and a δ-GLMB Filter.
Sensors (Basel). 2018 Jul 16;18(7):2308. doi: 10.3390/s18072308.

引用本文的文献

1
Cooperative-PHD Tracking Based on Distributed Sensors for Naval Surveillance Area.
Sensors (Basel). 2022 Jan 19;22(3):729. doi: 10.3390/s22030729.
3
Tracking Multiple Marine Ships via Multiple Sensors with Unknown Backgrounds.
Sensors (Basel). 2019 Nov 18;19(22):5025. doi: 10.3390/s19225025.
4
GLMB Tracker with Partial Smoothing.
Sensors (Basel). 2019 Oct 12;19(20):4419. doi: 10.3390/s19204419.

本文引用的文献

1
"Statistics 103" for Multitarget Tracking.
Sensors (Basel). 2019 Jan 8;19(1):202. doi: 10.3390/s19010202.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验