Suppr超能文献

基于分布式传感器的航海监控区域协同-PHD 跟踪。

Cooperative-PHD Tracking Based on Distributed Sensors for Naval Surveillance Area.

机构信息

PEE/COPPE-Department of Electrical Engineering, Federal University of Rio de Janeiro, Cidade Universitária, Centro de Tecnologia, Bloco H, Rio de Janeiro 21941-972, RJ, Brazil.

出版信息

Sensors (Basel). 2022 Jan 19;22(3):729. doi: 10.3390/s22030729.

Abstract

Brazil has an extensive coastline and Exclusive Economic Zone (EEZ) area, which are of high economic and strategic importance. A Maritime Surveillance System becomes necessary to provide information and data to proper authorities, and target tracking is crucial. This paper focuses on a multitarget tracking application to a large-scale maritime surveillance system. The system is composed of a sensor network distributed over an area of interest. Due to the limited computational capabilities of nodes, the sensors send their tracking data to a central station, which is responsible for gathering and processing information obtained by the distributed components. The local Multitarget Tracking (MTT) algorithm employs a random finite set approach, which adopts a Gaussian mixture Probability Hypothesis Density (PHD) filter. The proposed data fusion scheme, utilized in the central station, consists of an additional step of prune & merge to the original GM PHD filter algorithm, which is the main contribution of this work. Through simulations, this study illustrates the performance of the proposed algorithm with a network composed of two stationary sensors providing the data. This solution yields a better tracking performance when compared to individual trackers, which is attested by the Optimal Subpattern Assignment (OSPA) metric and its location and cardinality components. The presented results illustrate the overall performance improvement attained by the proposed solution. Moreover, they also stress the need to resort to a distributed sensor network to tackle real problems related to extended targets.

摘要

巴西拥有广阔的海岸线和专属经济区(EEZ),这些地区具有重要的经济和战略意义。为了向相关部门提供信息和数据,以及进行目标跟踪,建立一个海上监视系统是非常必要的。本文专注于应用于大规模海上监视系统的多目标跟踪。该系统由分布在感兴趣区域的传感器网络组成。由于节点的计算能力有限,传感器将其跟踪数据发送到中央站,中央站负责收集和处理分布式组件获取的信息。局部多目标跟踪(MTT)算法采用随机有限集方法,采用高斯混合概率假设密度(PHD)滤波器。所提出的数据融合方案在中央站中使用,在原始 GM PHD 滤波器算法的基础上增加了修剪和合并步骤,这是这项工作的主要贡献。通过仿真,本文用两个提供数据的静止传感器组成的网络说明了所提出算法的性能。与单个跟踪器相比,该解决方案的跟踪性能更好,这可以通过最优子模式分配(OSPA)度量及其位置和基数分量来证明。所呈现的结果说明了所提出的解决方案获得的整体性能提升。此外,它们还强调需要使用分布式传感器网络来解决与扩展目标相关的实际问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbe0/8838208/98028e59091e/sensors-22-00729-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验