Suppr超能文献

基于模糊分类方法的帕金森病语音测试病例诊断

Fuzzy Classification Methods Based Diagnosis of Parkinson's disease from Speech Test Cases.

作者信息

Dastjerd Niousha Karimi, Sert Onur Can, Ozyer Tansel, Alhajj Reda

机构信息

TOBB University of Economics and Technology, Sogutozu, Ankara, 06560, Turkey.

Department of Computer Science, University of Calgary, Calgary, Alberta, Canada.

出版信息

Curr Aging Sci. 2019;12(2):100-120. doi: 10.2174/1874609812666190625140311.

Abstract

BACKGROUND

Together with the Alzheimer's disease, Parkinson's disease is considered as one of the two serious known neurodegenerative diseases. Physicians find it hard to predict whether a given patient has already developed or is expected to develop the Parkinson's disease in the future. To overcome this difficulty, it is possible to develop a computing model, which analyzes the data related to a given patient and predicts with acceptable accuracy when he/she is anticipated to develop the Parkinson's disease.

OBJECTIVES

This paper contributes an attractive prediction framework based on some machine learning approaches for distinguishing people with Parkinsonism from healthy individuals.

METHODS

Several fuzzy classifiers such as Inductive Fuzzy Classifier, Fuzzy Rough Classifier and two types of neuro-fuzzy classifiers have been employed.

RESULTS

The fuzzy classifiers utilized in this study have been tested using the "Parkinson Speech Dataset with Multiple Types of Sound Recordings Data Set" of 40 subjects available on the UCI repository.

CONCLUSION

The results achieved show that FURIA, MLP- Bagging - SGD, genfis2 and scg1 performed the best among the fuzzy rough, WEKA, adaptive neuro-fuzzy and neuro-fuzzy classifiers, respectively. The worst performance belongs to nearest neighborhood, IBK, genfis3 and scg3 among the formerly mentioned classifiers. The results reported in this paper are better in comparison to the results reported in Sakar et al., where the same dataset was used, with utilization of different classifiers. This demonstrates the applicability and effectiveness of the fuzzy classifiers used in this study as compared to the non-fuzzy classifiers used by Sakar et al.

摘要

背景

帕金森病与阿尔茨海默病一起,被认为是已知的两种严重神经退行性疾病之一。医生很难预测特定患者是否已经患上或将来是否会患上帕金森病。为了克服这一困难,可以开发一种计算模型,该模型分析与特定患者相关的数据,并以可接受的准确率预测其何时可能患上帕金森病。

目的

本文基于一些机器学习方法,贡献了一个有吸引力的预测框架,用于区分帕金森症患者和健康个体。

方法

使用了几种模糊分类器,如归纳模糊分类器、模糊粗糙分类器和两种类型的神经模糊分类器。

结果

本研究中使用的模糊分类器已通过UCI存储库中提供的40名受试者的“具有多种类型录音数据集的帕金森语音数据集”进行了测试。

结论

结果表明,FURIA、MLP - Bagging - SGD、genfis2和scg1分别在模糊粗糙、WEKA、自适应神经模糊和神经模糊分类器中表现最佳。在上述分类器中,最差的性能属于最近邻、IBK、genfis3和scg3。与Sakar等人使用相同数据集并使用不同分类器所报告的结果相比,本文所报告的结果更好。这证明了本研究中使用 的模糊分类器与Sakar等人使用的非模糊分类器相比的适用性和有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验