Pomerantz Natalie L, Anderson Erin E, Dugan Nicholas P, Hoffman Nicole F, Barton Heather F, Lee Dennis T, Oldham Christopher J, Peterson Gregory W, Parsons Gregory N
U.S. Army Combat Capabilities Development Command Soldier Center , 10 General Greene Avenue , Natick , Massachusetts 01760 , United States.
Battelle Memorial Institute Natick Operations , 313 Speen Street , Natick , Massachusetts 01760 , United States.
ACS Appl Mater Interfaces. 2019 Jul 10;11(27):24683-24690. doi: 10.1021/acsami.9b04091. Epub 2019 Jun 26.
Currently, air permeable chemical/biological (CB) protective garments are based on activated carbon technology, which reduces moisture vapor transport needed for evaporative cooling and has potential to absorb and concentrate toxic materials. Researchers are exploring classes of sorbent materials that can selectively accumulate and decompose target compounds for potential to enhance protective suits and allow for novel filtration devices. Here, the metal-organic frameworks (MOFs) UiO-66-NH and HKUST-1 have been identified as such materials. To better understand how MOFs can perform in future CB protective systems, atomic layer deposition (ALD) and solution deposition were used to modify nonwoven polypropylene and flame-resistant fabrics with HKUST-1 and UiO-66-NH. Air permeation, water vapor transport, filtration efficiency, and chemical reactivity against chemical agent simulants were assessed in relation to ALD thickness and MOF crystal size. MOF deposition on substrates decreased both air and chemical permeation while increasing filtration efficiency and chemical sorption. Moisture vapor transport was not affected by MOF growth on substrates, which is promising when considering thermal properties of protective garments. Future work should continue to explore how MOF deposition onto fiber and textile substrates impacts transport properties and chemical absorbance.
目前,透气型化学/生物(CB)防护服基于活性炭技术,该技术降低了蒸发冷却所需的湿气传输,并有可能吸收和浓缩有毒物质。研究人员正在探索能够选择性积累和分解目标化合物的吸附剂材料类别,以期改进防护服并开发新型过滤装置。在此,金属有机框架(MOF)UiO-66-NH和HKUST-1已被确定为这类材料。为了更好地了解MOF在未来CB防护系统中的性能,采用原子层沉积(ALD)和溶液沉积法,用HKUST-1和UiO-66-NH对非织造聚丙烯和阻燃织物进行改性。针对ALD厚度和MOF晶体尺寸,评估了透气率、水汽传输、过滤效率以及对化学战剂模拟物的化学反应性。MOF在基材上的沉积降低了空气和化学物质的渗透率,同时提高了过滤效率和化学吸附能力。基材上MOF的生长对水汽传输没有影响,从防护服的热性能角度考虑,这是很有前景的。未来的工作应继续探索MOF沉积到纤维和纺织基材上如何影响传输性能和化学吸附性能。