Petruk Ariel A, Allen Caroline, Rivas Nicolás, Pichugin Kostyantyn, Sciaini Germán
The Ultrafast electron Imaging Lab (UeIL), Department of Chemistry and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave. W., N2L 3G1, Waterloo, Ontario, Canada.
Nanotechnology. 2019 Sep 27;30(39):395703. doi: 10.1088/1361-6528/ab2cf2. Epub 2019 Jun 26.
We introduce a nanofluidic platform that can be used to carry out femtosecond electron diffraction (FED) and transmission electron microscopy (TEM) measurements in liquid samples or in-liquid specimens, respectively. The nanofluidic cell (NFC) system presented herein has been designed to withstand high sample refreshing rates (over one kilohertz), a prerequisite to succeed with FED experiments in our lab. Short beam paths, below 1 μm, in combination with ultrathin membranes (less than 100 nm thick) are necessary conditions for in-liquid FED and TEM studies due to the strongly interacting nature of electrons. Depending on the application, the beam path in our NFC can be tuned between 50 nm and 10 μm with ultrathin stoichiometric silicon nitride (SiN) windows as thin as 20 nm. Stoichiometric SiN has been selected to reduce membrane bulging owing to its higher tensile stress and transparency in the UV-vis-NIR region to allow for laser excitation in FED experiments. Key design parameters and improvements made over previous NFC systems are discussed, and some preliminary electron images obtained by 200 kV scanning TEM are presented.
我们介绍了一种纳米流体平台,该平台可分别用于对液体样品或液体中的标本进行飞秒电子衍射(FED)和透射电子显微镜(TEM)测量。本文介绍的纳米流体池(NFC)系统经过设计,能够承受高样品更新速率(超过1千赫兹),这是我们实验室成功进行FED实验的一个先决条件。由于电子的强相互作用特性,对于液体中的FED和TEM研究而言,短光束路径(低于1μm)与超薄膜(厚度小于100nm)相结合是必要条件。根据应用需求,我们NFC中的光束路径可通过薄至20nm的超薄化学计量氮化硅(SiN)窗口在50nm至10μm之间进行调节。选择化学计量SiN是为了减少膜的鼓起,因为其具有较高的拉伸应力以及在紫外 - 可见 - 近红外区域的透明度,以便在FED实验中进行激光激发。讨论了关键设计参数以及相对于以前的NFC系统所做的改进,并展示了通过200kV扫描TEM获得的一些初步电子图像。