Suppr超能文献

用于土地覆盖分类的时间序列干涉合成孔径雷达特征分析:基于L波段合成孔径雷达图像的密集林区案例研究

Analyses of Time Series InSAR Signatures for Land Cover Classification: Case Studies over Dense Forestry Areas with L-Band SAR Images.

作者信息

Yun Hye-Won, Kim Jung-Rack, Choi Yun-Soo, Lin Shih-Yuan

机构信息

Department of Geoinformatics, University of Seoul, Seoulsiripdaero 163, Dongdaemum-gu, Seoul 02504, Korea.

Disaster Information Research Division, National Disaster Management Research Institute, 365 Jongga-ro, Jung-gu, Ulsan 44538, Korea.

出版信息

Sensors (Basel). 2019 Jun 25;19(12):2830. doi: 10.3390/s19122830.

Abstract

As demonstrated in prior studies, InSAR holds great potential for land cover classification, especially considering its wide coverage and transparency to climatic conditions. In addition to features such as backscattering coefficient and phase coherence, the temporal migration in InSAR signatures provides information that is capable of discriminating types of land cover in target area. The exploitation of InSAR signatures was expected to provide merits to trace land cover change in extensive areas; however, the extraction of suitable features from InSAR signatures was a challenging task. Combining time series amplitudes and phase coherences through linear and nonlinear compressions, we showed that the InSAR signatures could be extracted and transformed into reliable classification features for interpreting land cover types. The prototype was tested in mountainous areas that were covered with a dense vegetation canopy. It was demonstrated that InSAR time series signature analyses reliably identified land cover types and also recognized tracing of temporal land cover change. Based on the robustness of the developed scheme against the temporal noise components and the availability of advanced spatial and temporal resolution SAR data, classification of finer land cover types and identification of stable scatterers for InSAR time series techniques can be expected. The advanced spatial and temporal resolution of future SAR assets combining the scheme in this study can be applicable for various important applications including global land cover changes monitoring.

摘要

如先前研究所示,干涉合成孔径雷达(InSAR)在土地覆盖分类方面具有巨大潜力,尤其是考虑到其广泛的覆盖范围以及对气候条件的穿透性。除了后向散射系数和相位相干性等特征外,InSAR特征中的时间迁移提供了能够区分目标区域土地覆盖类型的信息。利用InSAR特征有望为追踪大面积土地覆盖变化带来益处;然而,从InSAR特征中提取合适的特征是一项具有挑战性的任务。通过线性和非线性压缩将时间序列幅度和相位相干性相结合,我们表明可以提取InSAR特征并将其转换为可靠的分类特征,以解释土地覆盖类型。该原型在植被茂密的山区进行了测试。结果表明,InSAR时间序列特征分析能够可靠地识别土地覆盖类型,还能识别出土地覆盖的时间变化轨迹。基于所开发方案对时间噪声成分的稳健性以及先进的时空分辨率合成孔径雷达(SAR)数据的可用性,可以预期对更精细的土地覆盖类型进行分类以及为InSAR时间序列技术识别稳定散射体。结合本研究中的方案,未来SAR资产的先进时空分辨率可应用于包括全球土地覆盖变化监测在内的各种重要应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0baa/6631005/a2ce46bdbe05/sensors-19-02830-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验