Department of Internal Medicine, Saint Louis University, St. Louis, Missouri, USA.
Department of Pathology, Saint Louis University, St. Louis, Missouri, USA.
J Virol. 2019 Aug 28;93(18). doi: 10.1128/JVI.00811-19. Print 2019 Sep 15.
Hepatitis C virus (HCV) infection promotes metabolic disorders, and the severity of lipogenic disease depends upon the infecting virus genotype. Here, we have examined HCV genotype 1-, 2-, or 3-specific regulation of lipid metabolism, involving transforming growth factor β (TGF-β)-regulated phospho-Akt (p-Akt) and peroxisome proliferator-activated receptor alpha (PPARα) axes. Since HCV core protein is one of the key players in metabolic regulation, we also examined its contribution in lipid metabolic pathways. The expression of regulatory molecules, TGF-β1/2, phospho-Akt (Ser473), PPARα, sterol regulatory element-binding protein 1 (SREBP-1), fatty acid synthase (FASN), hormone-sensitive lipase (HSL), and acyl dehydrogenases was analyzed in virus-infected hepatocytes. Interestingly, HCV genotype 3a exhibited much higher activation of TGF-β and p-Akt, with a concurrent decrease in PPARα expression and fatty acid oxidation. A significant and similar decrease in HSL, unlike in HCV genotype 1a, was observed with both genotypes 2a and 3a. Similar observations were made from ectopic expression of the core genomic region from each genotype. The key role of TGF-β was further verified using specific small interfering RNA (siRNA). Together, our results highlight a significant difference in TGF-β-induced activity for the HCV genotype 2a- or 3a-induced lipogenic pathway, exhibiting higher triglyceride synthesis and a decreased lipolytic mechanism. These results may help in therapeutic modalities for early treatment of HCV genotype-associated lipid metabolic disorders. Hepatic steatosis is a frequent complication associated with chronic hepatitis C virus (HCV) infection and is a key prognostic indicator for progression to fibrosis and cirrhosis. Several mechanisms are proposed for the development of steatosis, especially with HCV genotype 3a. Our observations suggest that transforming growth factor β (TGF-β) and peroxisome proliferator-activated receptor alpha (PPARα)-associated mechanistic pathways in hepatocytes infected with HCV genotype 2a and 3a differ from those in cells infected with genotype 1a. The results suggest that a targeted therapeutic approach for enhanced PPARα and lipolysis may reduce HCV genotype-associated lipid metabolic disorder in liver disease.
丙型肝炎病毒(HCV)感染可导致代谢紊乱,脂肪生成疾病的严重程度取决于感染的病毒基因型。在这里,我们研究了 HCV 基因型 1、2 或 3 对脂质代谢的特异性调节,涉及转化生长因子β(TGF-β)调节的磷酸化 Akt(p-Akt)和过氧化物酶体增殖物激活受体α(PPARα)轴。由于 HCV 核心蛋白是代谢调节的关键因素之一,我们还研究了它在脂质代谢途径中的作用。在病毒感染的肝细胞中分析了调节分子 TGF-β1/2、磷酸化 Akt(Ser473)、PPARα、固醇调节元件结合蛋白 1(SREBP-1)、脂肪酸合酶(FASN)、激素敏感脂肪酶(HSL)和酰基辅酶 A 脱氢酶的表达。有趣的是,HCV 基因型 3a 表现出更高的 TGF-β 和 p-Akt 激活,同时 PPARα 表达和脂肪酸氧化降低。与 HCV 基因型 1a 不同,我们观察到 2a 和 3a 两种基因型的 HSL 均显著下降。从每种基因型的核心基因组区域异位表达也得到了类似的观察结果。使用特定的小干扰 RNA(siRNA)进一步验证了 TGF-β的关键作用。总之,我们的结果强调了 HCV 基因型 2a 或 3a 诱导的脂肪生成途径中 TGF-β 诱导活性的显著差异,表现出更高的甘油三酯合成和降低的脂肪分解机制。这些结果可能有助于 HCV 基因型相关脂质代谢紊乱的早期治疗方法。肝脂肪变性是慢性丙型肝炎病毒(HCV)感染的常见并发症,也是纤维化和肝硬化进展的关键预后指标。提出了几种发展为脂肪变性的机制,特别是 HCV 基因型 3a。我们的观察表明,感染 HCV 基因型 2a 和 3a 的肝细胞中与转化生长因子β(TGF-β)和过氧化物酶体增殖物激活受体α(PPARα)相关的机制途径与感染基因型 1a 的细胞不同。结果表明,针对增强 PPARα 和脂肪分解的靶向治疗方法可能会减少 HCV 基因型相关的肝脏疾病中的脂质代谢紊乱。