Suppr超能文献

传感器仪器化支架与微孔海绵状超轻材料集成,用于长期 3D 映射细胞行为和功能。

Sensor-Instrumented Scaffold Integrated with Microporous Spongelike Ultrabuoy for Long-Term 3D Mapping of Cellular Behaviors and Functions.

机构信息

Weldon School of Biomedical Engineering , Purdue University , 206 South Martin Jischke Drive , West Lafayette , Indiana 47907 , United States.

School of Mechanical Engineering , Hanyang University , 222 Wangsimni-ro , Seongdong-gu, Seoul 04763 , Republic of Korea.

出版信息

ACS Nano. 2019 Jul 23;13(7):7898-7904. doi: 10.1021/acsnano.9b02291. Epub 2019 Jun 24.

Abstract

Real-time monitoring of cellular behaviors and functions with sensor-instrumented scaffolds can provide a profound impact on fundamental studies of the underlying biophysics and disease modeling. Although quantitative measurement of predictive data for tests and physiologically relevant information in these contexts is important, the long-term reliable monitoring of cellular functions in three-dimensional (3D) environments is limited by the required set under wet cell culture conditions that are unfavorable to electronic instrument settings. Here, we introduce an ultrabuoyant 3D instrumented scaffold that can remain afloat on the surface of culture medium and thereby provides favorable environments for the entire electronic components in the air while the cells reside and grow underneath. This setting enables high-fidelity recording of electrical cell-substrate impedance and electrophysiological signals for a long period of time (weeks). Comprehensive studies reveal the utility of this platform as an effective tool for drug screening and tissue development.

摘要

利用传感器仪器化支架实时监测细胞行为和功能,可以对基础生物物理学研究和疾病建模产生深远影响。尽管在这些情况下对测试的预测数据和与生理相关的信息进行定量测量很重要,但在三维(3D)环境中对细胞功能进行长期可靠监测受到湿细胞培养条件下所需设置的限制,这些条件不利于电子仪器的设置。在这里,我们介绍了一种超轻量的 3D 仪器化支架,它可以漂浮在培养基表面,从而为空气和细胞下方的所有电子元件提供有利的环境。这种设置可以长时间(数周)高保真地记录细胞-基质阻抗和电生理信号。综合研究表明,该平台是一种有效的药物筛选和组织开发工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验