Wu Wenjie, Yang Tianxiao, Zhang Yuxin, Wang Feng, Nie Qiuhai, Ma Yong, Cao Xia, Wang Zhong Lin, Wang Ning, Zhang Liqun
Center of Advanced Elastomer Materials, State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , P. R. China.
Engineering Research Center of Ministry of Education on Energy and Resource Saved Elastomers , Beijing University of Chemical Technology , Beijing 100029 , China.
ACS Nano. 2019 Jul 23;13(7):8202-8212. doi: 10.1021/acsnano.9b03427. Epub 2019 Jun 24.
Electrostatic discharge (ESD), a universal phenomenon derived from tribocharging and electrostatic induction, has always been regarded as a negative effect because it may cause various types of damage, such as gas explosions, wildfires, failure of integrated circuits, and so on. Normally, ESD is avoided by conducting those harmful charges through the surface or the whole bulk, by means of improving the conductivity of dielectrics or directly using conductive materials. However, the first approach compromises other performances at the same time, whereas the second one can be applied in only a few circumstances. In this Article, we analyzed the working principle of the triboelectric nanogenerator from the perspective of the time variation of the surface-charge-introduced polarization density , the second term of Maxwell's displacement current. Then, we demonstrated an electrostatic protective system by implanting a conductive layer under the tribocharging surface to form a triboelectric nanogenerator (TENG). Theoretical derivation, finite element analysis, and experimental results prove that this system can efficiently prevent ESD without sacrificing any other performance. Finally, we applied it to the next generation of the green tire, which can save >10% of fuel but still cannot be commercialized due to the potential ESD risk. This research work reveals a way to prevent ESD and shows great potential in the field of engineering.
静电放电(ESD)是一种由摩擦起电和静电感应产生的普遍现象,一直被视为一种负面影响,因为它可能会导致各种类型的损害,如气体爆炸、野火、集成电路故障等。通常,通过提高电介质的导电性或直接使用导电材料,使这些有害电荷通过表面或整个本体传导,从而避免静电放电。然而,第一种方法会同时损害其他性能,而第二种方法仅在少数情况下适用。在本文中,我们从表面电荷引起的极化密度(麦克斯韦位移电流的第二项)随时间变化的角度分析了摩擦纳米发电机的工作原理。然后,我们通过在摩擦起电表面下方植入导电层来形成摩擦纳米发电机(TENG),展示了一种静电保护系统。理论推导、有限元分析和实验结果证明,该系统能够有效防止静电放电,同时不牺牲任何其他性能。最后,我们将其应用于下一代绿色轮胎,这种轮胎可以节省超过10%的燃料,但由于潜在的静电放电风险,仍无法商业化。这项研究工作揭示了一种防止静电放电的方法,并在工程领域显示出巨大的潜力。