The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research , Ben-Gurion University of the Negev , Sde Boqer 8499000 , Israel.
Center for Bioengineering , University of California Santa Barbara , Santa Barbara , California 93106 , United States.
Langmuir. 2019 Jul 2;35(26):8709-8715. doi: 10.1021/acs.langmuir.9b00726. Epub 2019 Jun 20.
Supported lipid bilayers with incorporated membrane proteins have promising potential for diverse applications, such as filtration processes, drug delivery, and biosensors. For these applications, the continuity (lack of defects), electrical resistivity, and charge capacitance of the lipid bilayers are crucial. Here, we highlight the effects of temperature changes and the rate of temperature changes on the vertical and lateral expansion and contraction of lipid bilayers, which in turn affect the lipid bilayer resistivity and capacitance. We focused on lipid bilayers that consist of 50 mol % dimyristoyl- sn-glycero-3-phosphocholine (zwitterionic lipid) and 50 mol % dimyristoyl-3-trimethylammonium-propane (positively charged lipid) lipids. This lipid mixture is known to self-assemble into a continuous lipid bilayer on silicon wafers. It is shown experimentally and explained theoretically that slow cooling (e.g., -0.4 °C min) increases the resistivity significantly and reduces the capacitance of lipid bilayers, and these trends are reversed by heating. However, fast cooling (∼ -10 °C min or faster) damages the membrane and reduces the resistivity and capacitance of lipid bilayers to practically zero. Importantly, the addition of 50 mol % cholesterol to lipid bilayers prevents the resistivity and capacitance reduction after fast cooling. It is argued that the ratio of lipid diffusion coefficient to thermal expansion/contraction rate (proportional to the heating/cooling rate) is the crucial parameter that determines the effects of temperature changes on lipids bilayers. A high ratio (fast lipid diffusion) increases the lipid bilayer resistivity and decreases the capacitance upon cooling and vice versa. Similar trends are expected for lipid membranes that consist of other lipids or lipidlike mixtures.
具有嵌入膜蛋白的支撑脂质双层在多种应用中具有广阔的应用前景,例如过滤过程、药物输送和生物传感器。对于这些应用,脂质双层的连续性(无缺陷)、电阻率和电荷电容至关重要。在这里,我们强调了温度变化和温度变化率对脂质双层垂直和横向伸缩的影响,这反过来又影响了脂质双层的电阻率和电容。我们专注于由 50mol%二肉豆蔻酰基-sn-甘油-3-磷酸胆碱(两性离子脂质)和 50mol%二肉豆蔻酰基-3-三甲铵丙烷(带正电荷的脂质)组成的脂质双层。这种脂质混合物已知在硅片上自组装成连续的脂质双层。实验和理论都表明,缓慢冷却(例如,-0.4°C min)会显著增加电阻率并降低脂质双层的电容,而加热则会逆转这些趋势。然而,快速冷却(约-10°C min 或更快)会损坏膜并使脂质双层的电阻率和电容降至实际为零。重要的是,向脂质双层中添加 50mol%胆固醇可防止快速冷却后电阻率和电容降低。有人认为,脂质扩散系数与热膨胀/收缩率的比值(与加热/冷却速率成正比)是决定温度变化对脂质双层影响的关键参数。高比值(快速脂质扩散)会在冷却时增加脂质双层的电阻率并降低电容,反之亦然。对于由其他脂质或类脂质混合物组成的脂质膜,预计会出现类似的趋势。