Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.
Langmuir. 2010 Mar 2;26(5):3544-8. doi: 10.1021/la903232b.
A robust biomimetic cell membrane platform is critical for mechanistic studies of membrane protein channels. While polymer cushions are believed to facilitate the incorporation of membrane proteins in such a platform, a systematic characterization and optimization of such cushions is rarely performed. Here, we examine the influence of a polymer cushion on the electrical properties of supported 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) bilayers produced via a Langmuir-Blodgett deposition/vesicle fusion assembly process on single-crystal silicon. We show that the resistance of DPhPC bilayers is maximized at the calculated crossover concentration of the polymer (5.9 mol % PEG-lipids). Additionally, these bilayers are sufficiently stable to allow impedance analyses to be performed for nearly 3 weeks. These studies reveal the optimal PEG concentration that yields electrically robust bilayers and demonstrate the utility of the platform for future studies of membrane protein channels and membrane active peptides.
一个稳健的仿生细胞膜平台对于膜蛋白通道的机制研究至关重要。虽然聚合物垫被认为有助于将膜蛋白纳入这样的平台,但很少对这种垫子进行系统的表征和优化。在这里,我们研究了聚合物垫对通过Langmuir-Blodgett 沉积/囊泡融合组装过程在单晶硅上制备的 1,2-二植烷酰基-sn-甘油-3-磷酸胆碱(DPhPC)双层的电学性质的影响。我们表明,在聚合物的计算交叉浓度处(5.9mol%PEG-脂质),DPhPC 双层的电阻达到最大值。此外,这些双层足够稳定,可以进行近 3 周的阻抗分析。这些研究揭示了产生电稳健双层的最佳 PEG 浓度,并展示了该平台在未来膜蛋白通道和膜活性肽研究中的应用。