Oh Sookyung, Strand Deserah D, Kramer David M, Chen Jin, Montgomery Beronda L
Department of Energy - Plant Research Laboratory Michigan State University East Lansing MI USA.
Present address: Max-Planck-Institut für Molekulare Pflanzenphysiologie Potsdam-Golm Germany.
Plant Direct. 2018 Feb 19;2(2):e00043. doi: 10.1002/pld3.43. eCollection 2018 Feb.
Sigma factor (SIG) proteins contribute to promoter specificity of the plastid-encoded RNA polymerase during chloroplast genome transcription. All six members of the SIG family, that is, SIG1-SIG6, are nuclear-encoded proteins targeted to chloroplasts. Sigma factor 2 (SIG2) is a phytochrome-regulated protein important for stoichiometric control of the expression of plastid- and nuclear-encoded genes that impact plastid development and plant growth and development. Among SIG factors, SIG2 is required not only for transcription of chloroplast genes (i.e., anterograde signaling), but also impacts nuclear-encoded, photosynthesis-related, and light signaling-related genes (i.e., retrograde signaling) in response to plastid functional status. Although SIG2 is involved in photomorphogenesis in Arabidopsis, the molecular bases for its role in light signaling that impacts photomorphogenesis and aspects of photosynthesis have only recently begun to be investigated. Previously, we reported that SIG2 is necessary for phytochrome-mediated photomorphogenesis specifically under red (R) and far-red light, thereby suggesting a link between phytochromes and nuclear-encoded SIG2 in light signaling. To explore transcriptional roles of SIG2 in R-dependent growth and development, we performed RNA sequencing analysis to compare gene expression in mutant and Col-0 wild-type seedlings at two developmental stages (1- and 7-day). We identified a subset of misregulated genes involved in growth, hormonal cross talk, stress responses, and photosynthesis. To investigate the functional relevance of these gene expression analyses, we performed several comparative phenotyping tests. In these analyses, strong mutants showed insensitivity to bioactive GA , high intracellular levels of hydrogen peroxide (HO) indicative of a stress response, and specific defects in photosynthesis, including elevated levels of cyclic electron flow (CEF) and nonphotochemical quenching (NPQ). We demonstrated that SIG2 regulates a broader range of physiological responses at the molecular level than previously reported, with specific roles in red-light-mediated photomorphogenesis.
σ因子(SIG)蛋白在叶绿体基因组转录过程中有助于质体编码的RNA聚合酶的启动子特异性。SIG家族的所有六个成员,即SIG1 - SIG6,都是靶向叶绿体的核编码蛋白。σ因子2(SIG2)是一种受光敏色素调节的蛋白,对于影响质体发育以及植物生长和发育的质体编码和核编码基因的表达的化学计量控制很重要。在SIG因子中,SIG2不仅是叶绿体基因转录(即正向信号传导)所必需的,而且还会根据质体功能状态影响核编码的、光合作用相关的和光信号相关的基因(即逆向信号传导)。尽管SIG2参与了拟南芥的光形态建成,但其在影响光形态建成和光合作用方面的光信号传导中作用的分子基础直到最近才开始被研究。此前,我们报道SIG2是光敏色素介导的光形态建成所必需的,特别是在红光(R)和远红光下,从而表明光敏色素与光信号传导中核编码的SIG2之间存在联系。为了探索SIG2在依赖R的生长和发育中的转录作用,我们进行了RNA测序分析,以比较突变体和Col - 0野生型幼苗在两个发育阶段(1天和7天)的基因表达。我们鉴定出了一组在生长、激素相互作用、应激反应和光合作用中失调的基因。为了研究这些基因表达分析的功能相关性,我们进行了几项比较表型测试。在这些分析中,强突变体对生物活性赤霉素不敏感,细胞内过氧化氢(H₂O₂)水平高表明存在应激反应,并且在光合作用中存在特定缺陷,包括循环电子流(CEF)和非光化学猝灭(NPQ)水平升高。我们证明,SIG2在分子水平上调节的生理反应范围比以前报道的更广,在红光介导的光形态建成中具有特定作用。