Suppr超能文献

金纳米簇的预氧化导致 66%的阳极电致化学发光产率,并推动了机理研究。

Pre-oxidation of Gold Nanoclusters Results in a 66 % Anodic Electrochemiluminescence Yield and Drives Mechanistic Insights.

机构信息

Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350108, P. R. China.

Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.

出版信息

Angew Chem Int Ed Engl. 2019 Aug 19;58(34):11691-11694. doi: 10.1002/anie.201905007. Epub 2019 Jul 18.

Abstract

Gold nanoclusters (AuNCs) are attractive electrochemiluminescence (ECL) emitters because of their excellent stability, near IR emission, and biocompatibility. However, their ECL quantum yield is relatively low, and our limited fundamental understanding has hindered rational improvement of this parameter. Herein, we report drastic enhancement of the ECL of ligand-stabilized AuNCs by on-electrode pre-oxidation with triethylamine (TEA) as a co-reactant. The l-methionine-stabilized AuNCs resulted in a record high ECL yield of 66 %. This strategy was successfully extended to other AuNCs, and it is more effective for ligand shells that allow more effective electron transfer. In addition, excitation of the pre-oxidized ECL required a lower potential than conventional methods, and no additional instrument was required. This work opens avenues for solving a challenging problem of AuNC-based ECL probes and enriches fundamental understanding, greatly broadening their potential applications.

摘要

金纳米团簇(AuNCs)由于其出色的稳定性、近红外发射和生物相容性,是一种很有吸引力的电致化学发光(ECL)发射器。然而,它们的 ECL 量子产率相对较低,而我们对这一参数的基本理解有限,阻碍了对这一参数的合理改进。在此,我们报告了通过三乙胺(TEA)作为共反应物在电极上进行预氧化,极大地增强了配体稳定的 AuNCs 的 ECL。l-甲硫氨酸稳定的 AuNCs 产生了创纪录的 66%的 ECL 产率。该策略成功扩展到其他 AuNCs,对于允许更有效电子转移的配体壳层更为有效。此外,预氧化 ECL 的激发所需的电位低于传统方法,并且不需要额外的仪器。这项工作为解决基于 AuNC 的 ECL 探针的挑战性问题开辟了道路,并丰富了基础理解,极大地拓宽了它们的潜在应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验