Yale-NUS College, 16 College Avenue West, Singapore, 138527, Singapore.
BMC Bioinformatics. 2019 Jun 27;20(1):357. doi: 10.1186/s12859-019-2941-z.
C4 photosynthesis is a key domain of plant research with outcomes ranging from crop quality improvement, biofuel production and efficient use of water and nutrients. A metabolic network model of C4 "lab organism" Setaria viridis with extensive gene-reaction associations can accelerate target identification for desired metabolic manipulations and thereafter in vivo validation. Moreover, metabolic reconstructions have also been shown to be a significant tool to investigate fundamental metabolic traits.
A mass and charge balance genome-scale metabolic model of Setaria viridis was constructed, which was tested to be able to produce all major biomass components in phototrophic and heterotrophic conditions. Our model predicted an important role of the utilization of NH[Formula: see text] and NO[Formula: see text] ratio in balancing charges in plants. A multi-tissue extension of the model representing C4 photosynthesis was able to utilize NADP-ME subtype of C4 carbon fixation for the production of lignocellulosic biomass in stem, providing a tool for identifying gene associations for cellulose, hemi-cellulose and lignin biosynthesis that could be potential target for improved lignocellulosic biomass production. Besides metabolic engineering, our modeling results uncovered a previously unrecognized role of the 3-PGA/triosephosphate shuttle in proton balancing.
A mass and charge balance model of Setaria viridis, a model C4 plant, provides the possibility of system-level investigation to identify metabolic characteristics based on stoichiometric constraints. This study demonstrated the use of metabolic modeling in identifying genes associated with the synthesis of particular biomass components, and elucidating new role of previously known metabolic processes.
C4 光合作用是植物研究的一个关键领域,其成果涵盖了从作物质量改良、生物燃料生产到水和养分的高效利用等多个方面。具有广泛基因-反应关联的 C4“实验室生物”柳枝稷的代谢网络模型可以加速目标识别,实现所需的代谢操作,并随后在体内进行验证。此外,代谢重建也已被证明是研究基本代谢特征的重要工具。
构建了柳枝稷的质量和电荷平衡基因组规模代谢模型,该模型在光养和异养条件下均能生产所有主要生物量成分。我们的模型预测了 NH[Formula: see text]和 NO[Formula: see text]利用比率在植物中平衡电荷的重要作用。该模型的多组织扩展代表了 C4 光合作用,能够利用 NADP-ME 型 C4 碳固定来生产木质纤维素生物质,为鉴定纤维素、半纤维素和木质素生物合成的基因关联提供了工具,这些关联可能是提高木质纤维素生物质产量的潜在目标。除了代谢工程,我们的建模结果还揭示了 3-PGA/三磷酸甘油醛穿梭在质子平衡中的一个以前未被认识到的作用。
柳枝稷,一种模式 C4 植物的质量和电荷平衡模型,提供了基于化学计量约束进行系统水平研究以识别代谢特征的可能性。本研究表明,代谢建模可用于识别与特定生物量成分合成相关的基因,并阐明先前已知代谢过程的新作用。