Body Imaging Service, Department of Radiology, Evelyn H. Lauder Breast Center, Memorial Sloan Kettering Cancer Center, 300 East 66th St., Suite 757, New York, NY, 10065, USA.
Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Abdom Radiol (NY). 2019 Nov;44(11):3755-3763. doi: 10.1007/s00261-019-02117-w.
To predict microsatellite instability (MSI) status of colon cancer on preoperative CT imaging using radiomic analysis.
This retrospective study involved radiomic analysis of preoperative CT imaging of patients who underwent resection of stage II-III colon cancer from 2004 to 2012. A radiologist blinded to MSI status manually segmented the tumor region on CT images. 254 Intensity-based radiomic features were extracted from the tumor region. Three prediction models were developed with (1) only clinical features, (2) only radiomic features, and (3) "combined" clinical and radiomic features. Patients were randomly separated into training (n = 139) and test (n = 59) sets. The model was constructed from training data only; the test set was reserved for validation only. Model performance was evaluated using AUC, sensitivity, specificity, PPV, and NPV.
Of the total 198 patients, 134 (68%) patients had microsatellite stable tumors and 64 (32%) patients had MSI tumors. The combined model performed slightly better than the other models, predicting MSI with an AUC of 0.80 for the training set and 0.79 for the test set (specificity = 96.8% and 92.5%, respectively), whereas the model with only clinical features achieved an AUC of 0.74 and the model with only radiomic features achieved an AUC of 0.76. The model with clinical features alone had the lowest specificity (70%) compared with the model with radiomic features alone (95%) and the combined model (92.5%).
Preoperative prediction of MSI status via radiomic analysis of preoperative CT adds specificity to clinical assessment and could contribute to personalized treatment selection.
利用放射组学分析在术前 CT 影像上预测结肠癌的微卫星不稳定性 (MSI) 状态。
本回顾性研究对 2004 年至 2012 年间接受 II 期-III 期结肠癌切除术的患者的术前 CT 影像进行放射组学分析。一名对 MSI 状态不知情的放射科医生在 CT 图像上手动勾画肿瘤区域。从肿瘤区域提取了 254 个基于强度的放射组学特征。利用(1)仅临床特征、(2)仅放射组学特征和(3)“联合”临床和放射组学特征,建立了三种预测模型。患者被随机分为训练(n=139)和测试(n=59)两组。仅使用训练数据构建模型,测试集仅用于验证。使用 AUC、敏感性、特异性、PPV 和 NPV 评估模型性能。
在总共 198 名患者中,134 名(68%)患者的肿瘤为微卫星稳定,64 名(32%)患者的肿瘤为 MSI 肿瘤。联合模型的表现略优于其他模型,在训练集和测试集上预测 MSI 的 AUC 分别为 0.80 和 0.79(特异性分别为 96.8%和 92.5%),而仅具有临床特征的模型的 AUC 为 0.74,仅具有放射组学特征的模型的 AUC 为 0.76。仅具有临床特征的模型的特异性(70%)最低,而仅具有放射组学特征的模型(95%)和联合模型(92.5%)的特异性均高于该模型。
通过术前 CT 的放射组学分析对 MSI 状态进行术前预测,可提高临床评估的特异性,有助于个性化治疗选择。