Suppr超能文献

基于遗传算法增强的人工神经网络的 CT 影像组学特征无创预测结直肠癌微卫星不稳定性。

Non-invasive prediction of microsatellite instability in colorectal cancer by a genetic algorithm-enhanced artificial neural network-based CT radiomics signature.

机构信息

Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China.

Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.

出版信息

Eur Radiol. 2023 Jan;33(1):11-22. doi: 10.1007/s00330-022-08954-6. Epub 2022 Jun 30.

Abstract

OBJECTIVE

The stratification of microsatellite instability (MSI) status assists clinicians in making treatment decisions for colorectal cancer (CRC) patients. This study aimed to establish a CT-based radiomics signature to predict MSI status in patients with CRC.

METHODS

A total of 837 CRC patients who underwent preoperative enhanced CT and had available MSI status data were recruited from two hospitals. Radiomics features were extracted from segmented tumours, and a series of data balancing and feature selection strategies were used to select MSI-related features. Finally, an MSI-related radiomics signature was constructed using a genetic algorithm-enhanced artificial neural network model. Combined and clinical models were constructed using multivariate logistic regression analyses by integrating the clinical factors with or without the signature. A Kaplan-Meier survival analysis was conducted to explore the prognostic information of the signature in patients with CRC.

RESULTS

Ten features were selected to construct a signature which showed robust performance in both the internal and external validation cohorts, with areas under the curves (AUC) of 0.788 and 0.775, respectively. The performance of the signature was comparable to that of the combined model (AUCs of 0.777 and 0.767, respectively) and it outperformed the clinical model constituting age and tumour location (AUCs of 0.768 and 0.623, respectively). Survival analysis demonstrated that the signature could stratify patients with stage II CRC according to prognosis (HR: 0.402, p = 0.029).

CONCLUSIONS

This study built a robust radiomics signature for identifying the MSI status of CRC patients, which may assist individualised treatment decisions.

KEY POINTS

• Our well-designed modelling strategies helped overcome the problem of data imbalance caused by the low incidence of MSI. • Genetic algorithm-enhanced artificial neural network-based CT radiomics signature can effectively distinguish the MSI status of CRC patients. • Kaplan-Meier survival analysis demonstrated that our signature could significantly stratify stage II CRC patients into high- and low-risk groups.

摘要

目的

微卫星不稳定性(MSI)状态的分层有助于临床医生为结直肠癌(CRC)患者制定治疗决策。本研究旨在建立基于 CT 的放射组学特征,以预测 CRC 患者的 MSI 状态。

方法

共纳入 837 例在两所医院接受术前增强 CT 检查且 MSI 状态数据可用的 CRC 患者。从分割的肿瘤中提取放射组学特征,并采用一系列数据平衡和特征选择策略,选择与 MSI 相关的特征。最后,使用遗传算法增强的人工神经网络模型构建与 MSI 相关的放射组学特征。通过将特征与或不与签名结合,使用多元逻辑回归分析构建组合和临床模型。对签名在 CRC 患者中的预后信息进行 Kaplan-Meier 生存分析。

结果

选择了 10 个特征来构建一个特征,该特征在内部和外部验证队列中均表现出稳健的性能,曲线下面积(AUC)分别为 0.788 和 0.775。该特征的性能与组合模型相当(AUC 分别为 0.777 和 0.767),优于构成年龄和肿瘤位置的临床模型(AUC 分别为 0.768 和 0.623)。生存分析表明,该特征可根据预后对 II 期 CRC 患者进行分层(HR:0.402,p = 0.029)。

结论

本研究构建了一种稳健的放射组学特征,用于识别 CRC 患者的 MSI 状态,这可能有助于个体化治疗决策。

关键点

  1. 我们精心设计的建模策略有助于克服 MSI 发生率低导致的数据不平衡问题。

  2. 基于遗传算法增强的人工神经网络的 CT 放射组学特征可以有效地区分 CRC 患者的 MSI 状态。

  3. Kaplan-Meier 生存分析表明,我们的特征可以显著将 II 期 CRC 患者分为高风险和低风险组。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验