Li Junrui, Sun Shouheng
Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States.
Acc Chem Res. 2019 Jul 16;52(7):2015-2025. doi: 10.1021/acs.accounts.9b00172. Epub 2019 Jun 28.
Intermetallic nanoparticles (NPs) described in this Account are a class of metallic alloy NPs within which metal atoms are bonded via strong orbital interaction and ordered anisotropically in a specific crystallographic direction. Compared to the common metallic alloy NPs with solid solution structure, intermetallic NPs are generally more stable against chemical oxidation and etching. The strict stoichiometry requirement, well-defined atom binding environment and layered atomic arrangement also make intermetallic NPs an ideal model for understanding their physical and catalytic properties. This account summarizes the synthetic principles and strategies developed to obtain monodisperse intermetallic NPs, especially tetragonal L1-NPs. The thermodynamics and kinetics involved in the conversion between disordered and ordered structures are briefly discussed. The synthetic methods are grouped into two slightly different categories: solution-phase synthesis followed by solid state annealing and direct solution-phase synthesis. In the former method, high-surface-area supports are often needed to disperse NPs and to prevent them from aggregation, while in the latter method such supports are not required since the structure conversion temperature is lowered to a level that the conversion can proceed in the solution reaction condition. In any of these two synthetic approaches, various factors influencing intermetallic structure formation should be carefully controlled to ensure more complete structural transition within NPs. Using representative synthetic examples, we highlight the strategies explored to facilitate the formation of intermetallic structure, including the introduction of vacancies/defects within NP structures and the control of atom addition rate/seed-mediated diffusion to lower the energy barrier. These strategies illustrate how the concept of thermodynamics and kinetics can be used to design the synthesis of intermetallic NPs. Additionally, to correlate NP structure and catalysis, we introduce briefly the -band theory to explain how the electronic, strain and ensemble effects can be used to tune NP catalysis. We focus specifically on Pt-, Pd-, and Au-based L1-NPs and demonstrate how these L1-NPs could be prepared to show much enhanced catalysis for electrochemical reactions, including oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), formic acid oxidation reaction (FAOR), and thermo-oxidation reaction of CO. Due to the enhanced metal atom stability in the "sandwich"-type structure, the roles of the first-row transition metal atoms in catalysis are better understood to achieve catalysis optimization. This concept can be extended to other alloy NPs, demonstrating great potentials in using intermetallic structures to control NP reduction and oxidation catalysis for important chemical and energy applications.
本综述中描述的金属间化合物纳米颗粒(NPs)是一类金属合金纳米颗粒,其中金属原子通过强轨道相互作用键合,并在特定晶体学方向上呈各向异性有序排列。与具有固溶体结构的普通金属合金纳米颗粒相比,金属间化合物纳米颗粒通常在化学氧化和蚀刻方面更稳定。严格的化学计量要求、明确的原子结合环境和分层原子排列也使金属间化合物纳米颗粒成为理解其物理和催化性质的理想模型。本综述总结了为获得单分散金属间化合物纳米颗粒,特别是四方L1纳米颗粒而开发的合成原理和策略。简要讨论了无序和有序结构之间转换所涉及的热力学和动力学。合成方法分为两类略有不同的类别:溶液相合成后进行固态退火和直接溶液相合成。在前一种方法中,通常需要高比表面积载体来分散纳米颗粒并防止它们聚集,而在后一种方法中不需要这种载体,因为结构转换温度降低到可以在溶液反应条件下进行转换的水平。在这两种合成方法中的任何一种中,都应仔细控制影响金属间化合物结构形成的各种因素,以确保纳米颗粒内更完全的结构转变。通过代表性的合成实例,我们强调了为促进金属间化合物结构形成而探索的策略,包括在纳米颗粒结构中引入空位/缺陷以及控制原子添加速率/种子介导的扩散以降低能垒。这些策略说明了如何利用热力学和动力学概念来设计金属间化合物纳米颗粒的合成。此外,为了关联纳米颗粒结构与催化作用,我们简要介绍了能带理论,以解释如何利用电子、应变和系综效应来调节纳米颗粒催化作用。我们特别关注基于Pt、Pd和Au的L1纳米颗粒,并展示了如何制备这些L1纳米颗粒以显著增强对电化学反应的催化作用,包括氧还原反应(ORR)、析氢反应(HER)、甲酸氧化反应(FAOR)和CO的热氧化反应。由于“三明治”型结构中金属原子稳定性增强,更好地理解了第一排过渡金属原子在催化中的作用以实现催化优化。这一概念可扩展到其他合金纳米颗粒,展示了利用金属间化合物结构控制纳米颗粒还原和氧化催化以用于重要化学和能源应用方面巨大潜力。