Popović A, Marić I, Bele M, Rems E, Huš M, Pavko L, Ruiz-Zepeda F, Bijelić L, Grgur B, Hodnik N, Smiljanić M
Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
Faculty of Technology and Metallurgy. University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia.
ACS Catal. 2025 Jul 21;15(15):13444-13457. doi: 10.1021/acscatal.5c02831. eCollection 2025 Aug 1.
The rational design of electrocatalysts with high activity, durability, and low precious metal content is key to advancing hydrogen production via water electrolysis. Here, we present a multifunctional electrocatalyst based on Ru@Ir core-shell nanoparticles anchored on a conductive titanium oxynitride-graphene hybrid support (Ru@Ir/TiO N -C), achieving superior performance for the hydrogen evolution reaction (HER) in both acidic and alkaline media. The combination of the core-shell Ru@Ir architecture and the strong metal-support interaction (MSI) with TiO N optimizes hydrogen and hydroxide adsorption energies, as confirmed by X-ray photoelectron spectroscopy and density functional theory (DFT) calculations. In alkaline media, Ru@Ir/TiO N -C outperforms commercial Pt/C with a remarkably low overpotential of 13 mV at 10 mA cm and high mass activity, while in acidic conditions, it rivals Pt/C and surpasses monometallic analogs. The long-term stability of the composite is attributed to the enhanced nanoparticle anchoring and structural integrity provided by the TiO N support. This work shows that combining core-shell nanostructures with engineered conductive supports can effectively replace platinum in HER applications. Such a nanocomposite strategy offers a versatile platform for the development of advanced electrocatalysts across a broad range of energy conversion reactions.
设计具有高活性、耐久性和低贵金属含量的电催化剂是通过水电解推进制氢的关键。在此,我们展示了一种基于锚定在导电氮氧化钛-石墨烯混合载体(Ru@Ir/TiOₓNₙ-C)上的Ru@Ir核壳纳米颗粒的多功能电催化剂,在酸性和碱性介质中均实现了优异的析氢反应(HER)性能。核壳Ru@Ir结构与TiOₓNₙ之间强烈的金属-载体相互作用(MSI)的结合优化了氢和氢氧化物的吸附能,这通过X射线光电子能谱和密度泛函理论(DFT)计算得到证实。在碱性介质中,Ru@Ir/TiOₓNₙ-C在10 mA cm⁻²时具有13 mV的极低过电位和高质量活性,性能优于商业Pt/C;而在酸性条件下,它可与Pt/C相媲美并超过单金属类似物。复合材料的长期稳定性归因于TiOₓNₙ载体提供的增强的纳米颗粒锚定和结构完整性。这项工作表明,将核壳纳米结构与工程化导电载体相结合可以在HER应用中有效替代铂。这种纳米复合材料策略为开发适用于广泛能量转换反应的先进电催化剂提供了一个通用平台。