Xie Deyan, Zhang Xiangdong, Gao Quanxue, Han Jiale, Xiao Song, Gao Xinbo
IEEE Trans Cybern. 2020 Nov;50(11):4848-4854. doi: 10.1109/TCYB.2019.2922042. Epub 2019 Jun 26.
Subspace learning-based multiview clustering has achieved impressive experimental results. However, the similarity matrix, which is learned by most existing methods, cannot well characterize both the intrinsic geometric structure of data and the neighbor relationship between data. To consider the fact that original data space does not well characterize the intrinsic geometric structure, we learn the latent representation of data, which is shared by different views, from the latent subspace rather than the original data space by linear transformation. Thus, the learned latent representation has a low-rank structure without solving the nuclear-norm. This reduces the computational complexity. Then, the similarity matrix is adaptively learned from the learned latent representation by manifold learning which well characterizes the local intrinsic geometric structure and neighbor relationship between data. Finally, we integrate clustering, manifold learning, and latent representation into a unified framework and develop a novel subspace learning-based multiview clustering method. Extensive experiments on benchmark datasets demonstrate the superiority of our method.
基于子空间学习的多视图聚类已经取得了令人瞩目的实验结果。然而,大多数现有方法所学习的相似性矩阵不能很好地表征数据的内在几何结构以及数据之间的邻域关系。考虑到原始数据空间不能很好地表征内在几何结构这一事实,我们通过线性变换从潜在子空间而非原始数据空间学习不同视图共享的数据的潜在表示。因此,所学习的潜在表示具有低秩结构,而无需求解核范数。这降低了计算复杂度。然后,通过流形学习从所学习的潜在表示中自适应地学习相似性矩阵,该流形学习能很好地表征数据的局部内在几何结构和邻域关系。最后,我们将聚类、流形学习和潜在表示集成到一个统一框架中,并开发了一种基于子空间学习的新型多视图聚类方法。在基准数据集上进行的大量实验证明了我们方法的优越性。