Suppr超能文献

多视图子空间对偶聚类

Multiview Subspace Dual Clustering.

作者信息

Luo Shirui, Cao Xiaochun

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Dec;33(12):7425-7437. doi: 10.1109/TNNLS.2021.3084976. Epub 2022 Nov 30.

Abstract

A single clustering refers to the partitioning of data such that the similar data are assigned into the same group, whereas the dissimilar data are separated into different groups. Recently, multiview clustering has received significant attention in recent years. However, most existing works tackle the single-clustering scenario, which only use single clustering to partition the data. In practice, nevertheless, the real-world data are complex and can be clustered in multiple ways depending on different interpretations of the data. Unlike these methods, in this article, we apply dual clustering to multiview subspace clustering. We propose a multiview dual-clustering method to simultaneously explore consensus representation and dual-clustering structure in a unified framework. First, multiview features are integrated into a latent embedding representation through a multiview learning process. Second, the dual-clustering segmentation is incorporated into the subspace clustering framework. Finally, the learned dual representations are assigned to the corresponding clusterings. The proposed approach is efficiently solved using an alternating optimization scheme. Extensive experiments demonstrate the superiority of our method on real-world multiview dual- and single-clustering datasets.

摘要

单聚类是指对数据进行划分,以便将相似的数据分配到同一组中,而不相似的数据则被分到不同的组中。近年来,多视图聚类受到了广泛关注。然而,大多数现有工作处理的是单聚类场景,即仅使用单聚类对数据进行划分。然而在实际中,现实世界的数据很复杂,根据对数据的不同解释,可以有多种聚类方式。与这些方法不同,在本文中,我们将双聚类应用于多视图子空间聚类。我们提出了一种多视图双聚类方法,以在统一框架中同时探索共识表示和双聚类结构。首先,通过多视图学习过程将多视图特征集成到潜在嵌入表示中。其次,将双聚类分割纳入子空间聚类框架。最后,将学习到的双表示分配给相应的聚类。所提出的方法使用交替优化方案有效地求解。大量实验证明了我们的方法在真实世界的多视图双聚类和单聚类数据集上的优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验