Suppr超能文献

磁共振成像的放射组学分析提高了宫颈癌患者淋巴结转移的诊断性能。

Radiomics analysis of magnetic resonance imaging improves diagnostic performance of lymph node metastasis in patients with cervical cancer.

机构信息

Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, China; Zhengzhou University People's Hospital, Zhengzhou, China; Henan University People's Hospital, Zhengzhou, China.

Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, China; Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.

出版信息

Radiother Oncol. 2019 Sep;138:141-148. doi: 10.1016/j.radonc.2019.04.035. Epub 2019 Jun 25.

Abstract

BACKGROUND AND PURPOSE

Robust parameters are needed to predict lymph node metastasis (LNM) in locally advanced cervical cancer patients in order to select optimal treatment regimen. The aim of this study is to utilize radiomics analysis of magnetic resonance imaging (MRI) to improve diagnostic performance of LNM in cervical cancer patients.

MATERIALS AND METHODS

A total of 189 cervical cancer patients were divided into a training cohort (n = 126) and a validation cohort (n = 63). For each patient, we extracted radiomic features from intratumoral and peritumoral tissues on sagittal T2WI and axial apparent diffusion coefficient (ADC) maps. Afterward, the radiomic features associated with LNM status were selected by univariate ROC testing and logistic regression with the least absolute shrinkage and selection operator (LASSO) penalty in the training cohort. Based on the selected features, a support vector machine (SVM) model was established to predict LNM status. To further improve the diagnostic performance, a decision tree which combines the radiomics model with clinical factors was built.

RESULTS

Radiomics model of the intratumoral and peritumoral tissues on T2WI (T2) showed best sensitivity and clinical LN (c-LN) status showed best specificity to predict LNM. The decision tree that combines radiomics model of T2 and c-LN status achieved best diagnostic performance, with AUC and sensitivity of 0.895 and 94.3%, 0.847 and 100% in the training and validation cohort respectively.

CONCLUSIONS

The decision tree, which incorporates radiomics model of T2 and c-LN status can be potentially applied in the preoperative prediction of LNM in locally advanced cervical cancer patients.

摘要

背景与目的

为了选择最佳治疗方案,需要有稳健的参数来预测局部晚期宫颈癌患者的淋巴结转移(LNM)。本研究旨在利用磁共振成像(MRI)的放射组学分析来提高宫颈癌患者 LNM 的诊断性能。

材料与方法

共纳入 189 例宫颈癌患者,分为训练队列(n=126)和验证队列(n=63)。对每位患者,我们从矢状位 T2WI 和轴位表观扩散系数(ADC)图的肿瘤内和肿瘤周围组织中提取放射组学特征。然后,通过单变量 ROC 测试和具有最小绝对值收缩和选择算子(LASSO)惩罚的逻辑回归在训练队列中选择与 LNM 状态相关的放射组学特征。基于选定的特征,建立支持向量机(SVM)模型来预测 LNM 状态。为了进一步提高诊断性能,构建了一种将放射组学模型与临床因素相结合的决策树。

结果

T2WI 上肿瘤内和肿瘤周围组织的放射组学模型(T2)对预测 LNM 具有最佳的敏感性,而临床淋巴结(c-LN)状态对预测 LNM 具有最佳的特异性。结合 T2 和 c-LN 状态的放射组学模型的决策树在训练和验证队列中分别达到了最佳的诊断性能,AUC 和敏感性分别为 0.895 和 94.3%、0.847 和 100%。

结论

该决策树结合了 T2 和 c-LN 状态的放射组学模型,可潜在应用于局部晚期宫颈癌患者 LNM 的术前预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验