Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, 210029, China.
Department of Obstetrics & Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
Eur Radiol. 2021 Sep;31(9):6938-6948. doi: 10.1007/s00330-021-07735-x. Epub 2021 Feb 14.
To investigate the feasibility of TWI-based radiomics nomogram analysis to non-invasively predict normal-sized pelvic lymph node (LN) metastasis (LNM) in cervical cancer patients.
Preoperative images of 219 normal-sized pathologically confirmed LNs from 132 cervical cancer patients admitted to our hospital between January 2013 and March 2020 were retrospectively reviewed. Regions of interests (ROIs) were separately delineated on whole LNs and tumors. The maximum-relevance and minimum-redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) methods were used for the construction of radiomics signature. Logistic regression modeling was employed to build models based on clinical features on LN TWI (model 1), model 1 combined with LN radiomics features (model 2), and model 2 combined with tumor score (model 3). Diagnostic performance was assessed and compared.
Both model 2 and model 3 showed higher diagnostic accuracy (training: model 2 0.75, model 3 0.78, model 1 0.72; validation: model 2 0.77, model 3 0.69, model 1 0.66) and AUC (training: model 2 0.77, model 3 0.82, model 1 0.74; validation: model 2 0.75, model 3 0.74, model 1 0.70) than clinical model 1. Diagnostic performance of model 3 was improved compared with model 2 in primary cohort, but reduced in validation cohort. However, the differences did not show obvious statistical difference (p = 0.05 and p = 0.15).
TWI-based radiomics nomogram incorporating the LN radiomics signature with the clinical morphological LN features is promising for predicting the normal-sized pelvic LNM in cervical cancer patients. The original tumor radiomics analysis did not significantly improve the differential diagnosis of LNM.
• The combination of LN radiomics signature with LN clinical morphological features on TWI could discriminate LNM relatively well. • The tumor radiomics analysis did not significantly improve the differential diagnosis of LNM.
探讨基于 TWI 的放射组学列线图分析是否能无创预测宫颈癌患者正常大小盆腔淋巴结(LN)转移(LNM)。
回顾性分析 2013 年 1 月至 2020 年 3 月期间我院收治的 132 例宫颈癌患者的 219 个经病理证实的正常大小 LN 的术前图像。分别对全 LN 和肿瘤勾画 ROI。采用最大相关性最小冗余(mRMR)和最小绝对收缩和选择算子(LASSO)方法构建放射组学特征。基于 LN TWI 的临床特征(模型 1)、模型 1 联合 LN 放射组学特征(模型 2)和模型 2 联合肿瘤评分(模型 3)建立模型。评估并比较诊断性能。
模型 2 和模型 3 的诊断准确性(训练:模型 2 为 0.75,模型 3 为 0.78,模型 1 为 0.72;验证:模型 2 为 0.77,模型 3 为 0.69,模型 1 为 0.66)和 AUC(训练:模型 2 为 0.77,模型 3 为 0.82,模型 1 为 0.74;验证:模型 2 为 0.75,模型 3 为 0.74,模型 1 为 0.70)均高于临床模型 1。在原队列中,模型 3 的诊断性能优于模型 2,但在验证队列中,模型 3 的诊断性能低于模型 2。然而,差异无明显统计学差异(p = 0.05 和 p = 0.15)。
基于 TWI 的放射组学列线图纳入 LN 放射组学特征与临床形态学 LN 特征,有望预测宫颈癌患者正常大小盆腔 LNM。原发肿瘤放射组学分析并不能显著提高 LNM 的鉴别诊断。
基于 TWI 的 LN 放射组学特征与 LN 临床形态学特征的联合应用,可较好地区分 LNM。
肿瘤放射组学分析并不能显著提高 LNM 的鉴别诊断。