文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能在超声心动图中的应用。

Utilization of Artificial Intelligence in Echocardiography.

机构信息

Department of Cardiovascular Medicine, Tokushima University Hospital.

Department of Medical Image Informatics, Graduate School of Biomedical Sciences, Tokushima University.

出版信息

Circ J. 2019 Jul 25;83(8):1623-1629. doi: 10.1253/circj.CJ-19-0420. Epub 2019 Jun 29.


DOI:10.1253/circj.CJ-19-0420
PMID:31257314
Abstract

Echocardiography has a central role in the diagnosis and management of cardiovascular disease. Precise and reliable echocardiographic assessment is required for clinical decision-making. Even if the development of new technologies (3-dimentional echocardiography, speckle-tracking, semi-automated analysis, etc.), the final decision on analysis is strongly dependent on operator experience. Diagnostic errors are a major unresolved problem. Moreover, not only can cardiologists differ from one another in image interpretation, but also the same observer may come to different findings when a reading is repeated. Daily high workloads in clinical practice may lead to this error, and all cardiologists require precise perception in this field. Artificial intelligence (AI) has the potential to improve analysis and interpretation of medical images to a new stage compared with previous algorithms. From our comprehensive review, we believe AI has the potential to improve accuracy of diagnosis, clinical management, and patient care. Although there are several concerns about the required large dataset and "black box" algorithm, AI can provide satisfactory results in this field. In the future, it will be necessary for cardiologists to adapt their daily practice to incorporate AI in this new stage of echocardiography.

摘要

超声心动图在心血管疾病的诊断和治疗中起着核心作用。为了做出临床决策,需要进行精确和可靠的超声心动图评估。即使开发了新技术(三维超声心动图、斑点追踪、半自动分析等),分析的最终决策仍然强烈依赖于操作人员的经验。诊断错误是一个未解决的主要问题。此外,不仅心脏病学家在图像解释上可能存在差异,而且同一观察者在重复阅读时也可能得出不同的结果。临床实践中的日常高工作量可能导致这种错误,所有心脏病学家都需要在这一领域有精确的感知。与以前的算法相比,人工智能(AI)有可能将医学图像的分析和解释提升到一个新的水平。从我们的综合综述中,我们相信 AI 有可能提高诊断的准确性、临床管理和患者护理。尽管人们对所需的大数据集和“黑盒”算法存在一些担忧,但 AI 可以在这一领域提供令人满意的结果。未来,心脏病学家有必要调整其日常实践,将 AI 纳入超声心动图的这一新阶段。

相似文献

[1]
Utilization of Artificial Intelligence in Echocardiography.

Circ J. 2019-6-29

[2]
Artificial Intelligence and Machine Learning in Cardiovascular Imaging.

Methodist Debakey Cardiovasc J. 2020

[3]
Applications of artificial intelligence in multimodality cardiovascular imaging: A state-of-the-art review.

Prog Cardiovasc Dis. 2020-3-19

[4]
Radiomics in Echocardiography: Deep Learning and Echocardiographic Analysis.

Curr Cardiol Rep. 2020-7-9

[5]
Artificial Intelligence in Cardiovascular Imaging.

Methodist Debakey Cardiovasc J. 2020

[6]
Impact of Artificial Intelligence on Interventional Cardiology: From Decision-Making Aid to Advanced Interventional Procedure Assistance.

JACC Cardiovasc Interv. 2019-7-22

[7]
Will artificial intelligence change the job of the cardiac imaging specialist?

Arch Cardiovasc Dis. 2020-1

[8]
Automation, machine learning, and artificial intelligence in echocardiography: A brave new world.

Echocardiography. 2018-9

[9]
Artificial Intelligence and Echocardiography: A Primer for Cardiac Sonographers.

J Am Soc Echocardiogr. 2020-9

[10]
The Role of Artificial Intelligence in Interventional Oncology: A Primer.

J Vasc Interv Radiol. 2019-1

引用本文的文献

[1]
Application of artificial intelligence in echocardiography from 2009 to 2024: a bibliometric analysis.

Front Med (Lausanne). 2025-7-29

[2]
Advances and challenges in echocardiographic diagnosis and management of cardiac amyloidosis.

Int J Cardiovasc Imaging. 2025-2-26

[3]
Implementation of resource-efficient fetal echocardiography detection algorithms in edge computing.

PLoS One. 2024

[4]
Assessment of an Artificial Intelligence Tool for Estimating Left Ventricular Ejection Fraction in Echocardiograms from Apical and Parasternal Long-Axis Views.

Diagnostics (Basel). 2024-8-8

[5]
Artificial Intelligence in Congenital Heart Disease: Current State and Prospects.

JACC Adv. 2022-12-14

[6]
Accuracy and Efficacy of Artificial Intelligence-Derived Automatic Measurements of Transthoracic Echocardiography in Routine Clinical Practice.

J Clin Med. 2024-3-24

[7]
The effect of real-time EF automatic tool on cardiac ultrasound performance among medical students.

PLoS One. 2024

[8]
Chamber Attention Network (CAN): Towards interpretable diagnosis of pulmonary artery hypertension using echocardiography.

J Adv Res. 2024-9

[9]
Current role and future perspectives of artificial intelligence in echocardiography.

World J Cardiol. 2023-6-26

[10]
Deep learning approach for analyzing chest x-rays to predict cardiac events in heart failure.

Front Cardiovasc Med. 2023-5-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索