文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Assessment of an Artificial Intelligence Tool for Estimating Left Ventricular Ejection Fraction in Echocardiograms from Apical and Parasternal Long-Axis Views.

作者信息

Vega Roberto, Kwok Cherise, Rakkunedeth Hareendranathan Abhilash, Nagdev Arun, Jaremko Jacob L

机构信息

Exo Imaging, Santa Clara, CA 95054, USA.

Department of Radiology and Diagnostic Imaging, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada.

出版信息

Diagnostics (Basel). 2024 Aug 8;14(16):1719. doi: 10.3390/diagnostics14161719.


DOI:10.3390/diagnostics14161719
PMID:39202209
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11353168/
Abstract

This work aims to evaluate the performance of a new artificial intelligence tool (ExoAI) to compute the left ventricular ejection fraction (LVEF) in echocardiograms of the apical and parasternal long axis (PLAX) views. We retrospectively gathered echocardiograms from 441 individual patients (70% male, age: 67.3 ± 15.3, weight: 87.7 ± 25.4, BMI: 29.5 ± 7.4) and computed the ejection fraction in each echocardiogram using the ExoAI algorithm. We compared its performance against the ejection fraction from the clinical report. ExoAI achieved a root mean squared error of 7.58% in A2C, 7.45% in A4C, and 7.29% in PLAX, and correlations of 0.79, 0.75, and 0.89, respectively. As for the detection of low EF values (EF < 50%), ExoAI achieved an accuracy of 83% in A2C, 80% in A4C, and 91% in PLAX. Our results suggest that ExoAI effectively estimates the LVEF and it is an effective tool for estimating abnormal ejection fraction values (EF < 50%). Importantly, the PLAX view allows for the estimation of the ejection fraction when it is not feasible to acquire apical views (e.g., in ICU settings where it is not possible to move the patient to obtain an apical scan).

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5fd/11353168/2cd331d20e04/diagnostics-14-01719-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5fd/11353168/fee2b17924bc/diagnostics-14-01719-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5fd/11353168/13494ab7ebd9/diagnostics-14-01719-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5fd/11353168/2cd331d20e04/diagnostics-14-01719-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5fd/11353168/fee2b17924bc/diagnostics-14-01719-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5fd/11353168/13494ab7ebd9/diagnostics-14-01719-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5fd/11353168/2cd331d20e04/diagnostics-14-01719-g003.jpg

相似文献

[1]
Assessment of an Artificial Intelligence Tool for Estimating Left Ventricular Ejection Fraction in Echocardiograms from Apical and Parasternal Long-Axis Views.

Diagnostics (Basel). 2024-8-8

[2]
A machine learning algorithm supports ultrasound-naïve novices in the acquisition of diagnostic echocardiography loops and provides accurate estimation of LVEF.

Int J Cardiovasc Imaging. 2021-2

[3]
Video-Based Deep Learning for Automated Assessment of Left Ventricular Ejection Fraction in Pediatric Patients.

J Am Soc Echocardiogr. 2023-5

[4]
Left ventricular ejection fraction using a simplified wall motion score based on mid-parasternal short axis and apical four-chamber views for non-cardiologists.

BMC Cardiovasc Disord. 2023-3-8

[5]
Deep Learning-Based Automated Echocardiographic Quantification of Left Ventricular Ejection Fraction: A Point-of-Care Solution.

Circ Cardiovasc Imaging. 2021-6

[6]
Making Artificial Intelligence Lemonade Out of Data Lemons: Adaptation of a Public Apical Echo Database for Creation of a Subxiphoid Visual Estimation Automatic Ejection Fraction Machine Learning Algorithm.

J Ultrasound Med. 2022-8

[7]
The apical long-axis rather than the two-chamber view should be used in combination with the four-chamber view for accurate assessment of left ventricular volumes and function.

Eur Heart J. 1997-7

[8]
[Recognition of abnormal changes in echocardiographic videos by an artificial intelligence assisted diagnosis model based on 3D CNN].

Zhonghua Xin Xue Guan Bing Za Zhi. 2023-7-24

[9]
Estimation of Cardiac Systolic Function Based on Mitral Valve Movements: An Accurate Bedside Tool for Emergency Physicians in Dyspneic Patients.

J Ultrasound Med. 2018-9-28

[10]
Machine learning algorithm using publicly available echo database for simplified "visual estimation" of left ventricular ejection fraction.

World J Exp Med. 2022-3-20

引用本文的文献

[1]
AI-Augmented Point of Care Ultrasound in Intensive Care Unit Patients: Can Novices Perform a "Basic Echo" to Estimate Left Ventricular Ejection Fraction in This Acute-Care Setting?

J Clin Med. 2025-4-23

[2]
Overcoming barriers in the use of artificial intelligence in point of care ultrasound.

NPJ Digit Med. 2025-4-19

[3]
Segmentation-Free Estimation of Left Ventricular Ejection Fraction Using 3D CNN Is Reliable and Improves as Multiple Cardiac MRI Cine Orientations Are Combined.

Biomedicines. 2024-10-12

本文引用的文献

[1]
Influence of chest wall conformation on reproducibility of main echocardiographic indices of left ventricular systolic function.

Minerva Cardiol Angiol. 2024-4

[2]
Artificial Intelligence-Powered Left Ventricular Ejection Fraction Analysis Using the LVivoEF Tool for COVID-19 Patients.

J Clin Med. 2023-12-8

[3]
Real-Time Artificial Intelligence-Based Guidance of Echocardiographic Imaging by Novices: Image Quality and Suitability for Diagnostic Interpretation and Quantitative Analysis.

Circ Cardiovasc Imaging. 2023-11

[4]
Deep Learning-Enabled Assessment of Left Heart Structure and Function Predicts Cardiovascular Outcomes.

J Am Coll Cardiol. 2023-11-14

[5]
Diagnostic accuracy of point-of-care ultrasound with artificial intelligence-assisted assessment of left ventricular ejection fraction.

NPJ Digit Med. 2023-10-28

[6]
Automatic measurements of left ventricular volumes and ejection fraction by artificial intelligence: clinical validation in real time and large databases.

Eur Heart J Cardiovasc Imaging. 2024-2-22

[7]
Improved assessment of left ventricular ejection fraction using artificial intelligence in echocardiography: A comparative analysis with cardiac magnetic resonance imaging.

Int J Cardiol. 2024-1-1

[8]
Artificial intelligence-assisted interpretation of systolic function by echocardiogram.

Open Heart. 2023-7

[9]
Artificial Intelligence-Assisted Left Ventricular Diastolic Function Assessment and Grading: Multiview Versus Single View.

J Am Soc Echocardiogr. 2023-10

[10]
Left ventricular ejection fraction using a simplified wall motion score based on mid-parasternal short axis and apical four-chamber views for non-cardiologists.

BMC Cardiovasc Disord. 2023-3-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索